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Ganjam virus/Nairobi sheep disease virus induces
a pro-inflammatory response in infected sheep
Abid bin Tarif, Lidia Lasecka, Barbara Holzer and Michael D Baron*
Abstract

Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne
viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus,
which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus
is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay
for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of
NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially
apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity
in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a
quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar
changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.
Introduction
Nairobi sheep disease (NSD) was first identified at the
beginning of the 20th century by Montgomery as a dis-
ease affecting sheep and goats in parts of Kenya [1]. It
has since been identified in several places in East Africa.
A similar disease has also been reported in north east
India, where it was called Ganjam [2]. The recent appli-
cation of molecular sequencing techniques to the viruses
that cause these diseases (NSDV and GV, respectively)
revealed that they are the same virus [3,4], with different
strains existing on the two continents. Whether the virus
has existed for an historically long time in both places,
or is a relatively recent import from one part of the
world to another has yet to be determined. It is possible
that the virus was imported to Africa from India as a con-
sequence of the same kind of livestock movement that
introduced rinderpest virus to Africa in the 1880 s [5].
The virus is spread by hard (Ixodid) ticks, and appears

to be dependent on the tick vector for dissemination,
with no direct transmission between animals. This obli-
gate vector step may explain why the virus is not seen as
a major economic threat, since young animals in en-
demic areas tend to be protected by maternal antibodies
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through the period where they are first exposed to the
virus via a bite from an infected tick, after which they
have their own immune protection. The disease tends to
be only noticed on introduction of naive livestock into
an endemic area, e.g. for the purposes of improving local
breeds by crossing. The disease that ensues is regarded
as one of the most pathogenic in small ruminants, with
mortality rates as high as 90%; animals die from acute
haemorrhagic fever [1,6]. Disease is only seen in sheep
and goats, with no disease seen or viraemia detected
when cattle, buffalo, equids or other mammals are
infected [1,7], although the limitations of early virus de-
tection methods (pathogenesis in neonatal mouse brains)
have to be borne in mind. NSDV was originally seen as
a disease with a relatively restricted distribution, a distri-
bution largely dependent on that of the Rhipicephalus
appendiculatus tick [1,8]; in contrast, GV has been
reported predominantly in Haemaphysalis species in
India [7,9]. Recent studies, especially using molecular
detection techniques, have found the virus in tick sam-
ples from a much wider geographical area, and it now
appears that it is distributed over most of the Indian
sub-continent as well as much wider in East Africa than
the restricted area in Kenya originally reported [9].
NSDV/GV is a bunyavirus of the genus Nairovirus;

other members of the genus include Dugbe virus and
Kupe virus, both isolated from cattle ticks in East Africa,
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and the human pathogen Crimean Congo hemorrhagic
fever virus (CCHFV). CCHFV is another tick-borne virus
which appears to be spreading, with increasing out-
breaks in Russia, Turkey, India and Pakistan and recent
detection of the virus in tick samples from Spain [10].
The spread of CCHFV, or at least outbreaks of disease,
seems to be a consequence of a combination of changes
in land use and climate, leading to increased contact be-
tween people and ticks, and possibly changes in the
range of the tick vectors as well as their competence to
propagate the virus [11]. The range of NSDV/GV may
likewise be spreading, and its impact will also increase
as we push more and more for breed improvement and
maximising land use to manage the increasing global
demands for food. For this reason, and because it has
promise as a good model system to study the nairo-
viruses (while work on CCHFV is restricted to BSL4
laboratories, and lacks an in vivo system to study disease),
we have initiated work on NSDV/GV with a view to char-
acterising the virus and its pathology.
Early studies described the clinical signs of the disease

in detail, as well as establishing the dependence on the
tick vector. We have recently shown that the virus can
block the actions of both type 1 (interferon α/β) and
type 2 (interferon γ) interferons, as well as inhibit the in-
duction of interferon β in infected cells [12]. We report
here the results of an initial study of the replication
of the virus in sheep and the major cytokine responses
in infected animals. We found a fundamentally pro-
inflammatory response, with specific differences between
responses to a pathogenic and a non-pathogenic virus.
As part of the project, we have developed a sensitive,
NSDV/GV-specific, real-time PCR assay for detecting
viral RNA which may be useful in other labs for screen-
ing diagnostic samples where nairovirus infection is
suspected.

Materials and methods
Viruses and cells
Except where indicated, media and cells were obtained
from the Central Sterilisation Unit, this institute. MDBK
(Madin-Darby bovine kidney) cells and Vero-SLAM
(African green monkey kidney, expressing human
SLAM) cells (the gift of Dr Rick De Swart, Department
of Virology, Erasmus MC, The Netherlands) were grown
in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 5% foetal calf serum (FCS). Although
SLAM was not required for growth of NSDV,
Vero-SLAM cells were the Vero cells in general use in
our laboratory and it was known that the virus can
infect these cells. BHK21/clone 13 (baby hamster kidney)
cells were obtained from ATCC (LGC Standards,
Teddington, UK) and cultured in Glasgow modified
Eagle's Medium (GMEM) containing 10% FCS. PO (sheep,
kidney) cells (from the Collection of Cell Lines in
Veterinary Medicine (CCLV), Friedrich Loeffler Institute,
Riems, Germany) and BSR-T7 (a BHK-derived cell line
constitutively expressing T7 RNA polymerase) cells
(a gift from Prof K. K. Conzelman) were grown in
DMEM medium enriched with 10% FCS. SSF (primary
sheep skin fibroblast) cells and BSF (primary bovine skin
fibroblast) cells were prepared previously as described by
Childerstone et al. [13]. These cells were maintained in
Iscove’s modified Dulbecco’s medium (IMDM) (Life
Technologies, Paisley, UK) containing 10% FCS. BFA
(bovine foetal aortic endothelium) cells were obtained
from the European Cell Culture Collection) and grown
on Nutrient Mixture F-12 Ham medium (Sigma, Dorset,
UK) containing 20% FCS. Primary ovine endothelial cells
were either obtained from Dr H-H Takamatsu (The
Pirbright Institute) and maintained in IMDM containing
10% FCS or prepared from ovine pulmonary artery and
aorta essentially as described [14] and maintained in
medium M131 supplemented with microvascular growth
supplement (MVGS) (Life Technologies).
The Nairobi sheep disease virus (NSDV) isolate

(ND66-PC9) was obtained from Dr Piet van Rijn,
Central Veterinary Institute of Wageningen, Netherlands.
The Ganjam virus (GV) isolate (IG619, TVPII 236) was
obtained from World Reference Center for Emerging
Viruses and Arboviruses at the Galveston National
Laboratory, and was the kind gift of Prof Robert B
Tesh, University of Texas Medical Branch, Galveston,
Texas, USA. Virus stocks were grown in BHK21/clone
13 cells using GMEM containing 2% FCS, penicillin
(100 U/mL), streptomycin sulphate (100 μg/mL),
2 mM L-glutamine and 5% tryptose phosphate broth so-
lution. The virus titre was determined as the 50% tissue
culture infectious dose (TCID50) in BHK21 cells. Both
strains grew to similar final titres (~106/mL) and were
used after two additional passages in BHK cells. Multi-
plicity of infection (MOI) was calculated as TCID50 per
plated cell.

Multi-step growth curves of virus
Cells were plated in 6-well dishes 6-9 h before use, apart
from primary endothelial cells, which were plated 18 h
before infection to ensure good attachment. Cells were
infected with NSDV or GV at a MOI of 0.01; after 1 h
incubation at 37°C, 5% CO2, the inoculum was removed,
the cells were washed once with growth medium and
incubated in fresh medium at 37°C, 5% CO2. At 0, 12,
24, 36, 48 and 72 hours post infection (hpi) samples
were frozen at -80°C. Each virus time course was carried
out at least in duplicate. When all samples had been col-
lected, they were thawed and centrifuged at 2500 rpm,
4°C for 10 min to remove cell debris. The supernatants
were stored at -80°C. The amount of viruses in each
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sample was determined by titration on BSR-T7 cells (for
NSDV) or BHK21 (for GV). CPE (cytopathic effect) was
scored at 3-5 days post infection (dpi) and virus titre
was calculated as TCID50/mL by the Spearman-Kärber
method [15].

Animal study
The animal study described in this paper was subject to
full ethical review and licensing under the Animals
(Scientific Procedures) Act 1986 of the United Kingdom,
and was approved by the competent authority with Pro-
ject Licence number 70/7014. Six outbred sheep (female
Dorset breed animals at 7-8 months of age) were
obtained from commercial suppliers. Three animals were
infected subcutaneously with 104 TCID50 units of either
the NSDV or GV isolate at the first passage in BHK 21/
clone 13 cells from receipt of samples. The rectal
temperature of the animals was measured before the ex-
periment began and each day during the experiment.
Blood samples were taken prior to infection and on the
indicated days post infection into vacutainers for serum
(coagulated blood) and leucocytes (EDTA as anti-coagu-
lant) as well as into TempusW vacutainers (Life Tech-
nologies) for stabilisation of total RNA. Serum
samples were separated and stored at -20°C. White
cell counts were determined from duplicate samples
on the day of sampling, using a Cellometer Auto T4
(Nexcelcom, Lawrence, MA, USA). Red cells were
pelleted by centrifugation and the supernatant (essen-
tially plasma plus buffy coat cells) stored at -80°C
until used for virus isolation or RNA extraction.

RT-qPCR of viral RNA and ovine cytokines
RNA was prepared from the whole blood samples in
Tempus tubes using the TempusW Spin RNA Isolation
kit (Life Technologies). RNA was extracted from white
cell samples using RNeasy mini kits (Qiagen, West Sussex,
UK). All oligonucleotide primers were from Sigma.
Reverse transcription was carried out as instructed by the
manufacturer using Superscript II (Life Technologies)
with either genome-specific primer (0.1 pmol/μL final
concentration) or Oligo(dT)-Anch ((T)16VN) (5 pmol/μL
final concentration). cDNA was diluted 4-fold (3-fold if
RNA concentration was low) in water and heated at 75°C
for 15 min before use in PCR. PCR was performed in
10 μL (initial gradient PCRs) or 20 μL (real-time PCR)
reactions using Applied Biosystems SYBRW Green PCR
Master Mix (Life Technologies). Real-time PCR reactions
were carried out on a Rotorgene 2000 (Qiagen) and ana-
lysed using Rotor-Gene software v6; the threshold for
determining the Ct was set at normalised fluorescence =
0.01. The PCR program used consisted of a 10 min acti-
vation step at 95°C followed by 40 cycles of 15 s at
95°C, 30 s at the appropriate annealing temperature
(Table 1) and 30 s at 72°C. Final primer concentra-
tions for each real-time PCR assay were as listed in
Table 1. Each reaction contained 15 ng (whole blood)
or 3 ng (white cells) of RNA as cDNA.

Statistical analysis
Real-time PCR data from the animal experiment was
analysed using the General Linear Model form of
ANOVA as implemented in Minitab 16 with a model in
which the virus used and the days post infection were
fixed factors. Due to the loss of some animals at day 7,
analysis was restricted to the data from days 0, 2, 4
and 7. The two virus isolates were compared using the
ANOVA of the linear model, and the significance of any
increase or decrease of transcription on day 2, 4 and 7,
compared to the value at day zero, was determined using
Dunnett’s correction for multiple comparisons.

Results
Characteristics of virus isolates in cell culture
Two isolates of NSDV/GV were available to us, one of
NSDV Entebbe strain (ND66-PC9) originally prepared
by Terpstra from samples taken in Uganda in 1956 [18]
and passed 75 times in tissue culture, the other of GV
(IG619), originally isolated in India, but with no
recorded passage history. Both isolates were found to
grow to good titres (106 TCID50/mL) on BHK21/clone13
cells, as previously reported for NSDV [6] (data not
shown). We assessed their ability to grow in a variety of
other cultured cells, both continuous lines and primary
cells (Figure 1). The NSDV isolate grew well, to titres of
106 TCID50/mL, in all the cell lines tested with the ex-
ception of MDBK cells, an established bovine kidney
line, where the peak titre was only 104 TCID50/mL. This
was not due to a species-specific restriction, since the
virus grew equally well in bovine and ovine skin
fibroblasts, and in bovine and ovine endothelial cells
(Figure 1). This isolate grew well also in another ham-
ster kidney-derived cell line (BSR-T7). Cytopathic effect
(CPE) was observed in most of the cell types, though it
appeared more slowly in the primary skin fibroblasts. In
contrast, the GV isolate grew well only in BHK21/
clone13 cells, Vero cells or the bovine foetal endothelial
cell line, and showed strong CPE only in the BHK cells,
which were therefore used for titration of GV stocks.
This virus grew poorly in ovine or bovine kidney cell
lines, or in primary goat or sheep endothelial cells, and
essentially did not grow in the primary ovine or bovine
skin fibroblasts (Figure 1). In general NSDV growth
peaked at earlier time points (at 36 and 48 h post infec-
tion), whereas the GV displayed a slower growth rate,
and the virus titre did not peak by the end of the time
course. These data suggested that the extended passage
of the NSDV isolate in BHK cells has adapted it to cell



Table 1 PCR primer pairs and reaction conditions used in the work described in this paper

Target Primer sequences Ta1 [Primer]2 Reference

NSDV/GV (F1/R1A) TGACCATGCAGAACCAGATYG 62 300nM this paper

GAAACAAGCCTCATGCTAACCT

NSDV/GV (F2/R2) GGAGAATGGCAAAGAGGTTGT 64 300nM this paper

GTAAATCCGATTGGCAGTGAAG

NSDV/GV F3b (RT primer) GTCTTTGAACTYTGACCA n/a n/a this paper

IL-1β CCTTGGGTATCAGGGACAA 60 300nM [16]

TGCGTATGGCTTTCTTTAGG

IL-4 ACCTGTTCTGTGAATGAAGCCAA 60 300nM [17]

CCCTCATAATAGTCTTTAGCCTTTCC

IL-6 TCCAGAACGAGTTTGAGG 60 400nM [16]

CATCCGAATAGCTCTCAG

IL-8 ATGAGTACAGAACTTCGA 57 300nM [16]

TCATGGATCTTGCTTCTC

IL-10 TGCTGTTGACCCAGTCTCTG 60 200nM this paper

AGGGCAGAAAACGATGACAG

IL-12A TGGGCATTGTCTGTCTTCTG 60 200nM this paper

TTCTTCCAGGGAGGGTTTCT

IL-12B GCTGGGAGTACCCTGACACG 61 500nM [17]

GTGACTTTGGCTGAGGTTTGGTC

IL-18 ACTGTTCAGATAATGCACCCCAG 60 300nM [17]

TTCTTACACTGCACAGAGATGGTTAC

Interferon β CCAGATGGTTCTCCTGCTGTGT 63 300nM this paper

GACCAATACGGCATCTTCCTTC

TNFα GAATACCTGGACTATGCCGA 60 200nM [16]

CCTCACTTCCCTACATCCCT

TGFβ GTGGACATCAACGGGTTCAG 60 300nM this paper

TGTCCAGGCTCCAGATGTAG

Interferon γ CTCCGGCCTAACTCTCTCCT 60 300nM this paper

AGGCCCACCCTTAGCTACAT

GAPDH GGTGATGCTGGTGCTGAGTA 60 300nM [16]

TCATAAGTCCCTCCACGATG

SDHA ACCTGATGCTTTGTGCTCTGC 60 200nM [16]

CCTGGACGGGCTTGGAGTAA

G6PDH CGAGGCTGTGTACACCAAGA 60 300nM this paper

ATGTGGTGGAGCAGTGGAGT

1: Ta: annealing temperature.
2: [Primer]: primer concentration.
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culture in general; other studies in our laboratory have
shown this isolate replicates well in human cells as well
(A549 cells). The GV isolate appeared to be significantly
more restricted in the cell lines it will enter and repli-
cate in. However, there seems to be no species specific
restriction since each virus isolate grew equally well in
hamster, monkey and human-derived cell lines as well
as in bovine and ovine cells. An interesting observation
was that this isolate grew significantly worse in BSR-T7
cells (max titre 104) compared to BHK21/clone13 cells,
despite the fact that they are both subclones of BHK
cells, and it grew better in Veros than in BSR-T7 cells,
despite the observation that both cells are defective in
production of type 1 interferon [19,20].
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Figure 1 Growth of NSDV/GV isolates in cultured cells. The NSDV isolate (A-D) or the GV isolate (E-H) were used to infect different primary
(1º) or permanent cell lines as described in “Materials and methods”. At the indicated times post infection the cells were frozen and the titre
(TCID50/mL) of virus in the cell-free supernatant determined. Each experiment was carried out 2-4 times; symbols representing individual
experiments may overlap.
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Development of real-time assay for NSDV/GV genome
In order to be able to track and quantitate the growth
and spread of the virus isolates in samples taken during
animal studies, we developed a real-time PCR based
assay for viral RNA. We selected primers based on the
available sequences of the S segments of NSDV, GV,
CCHFV, Dugbe virus and Kupe virus. The S segment
was chosen because there is more extensive sequence
data for that segment than the M or L segments, and
primers were selected for the reverse transcription (RT)
step and for a Sybr Green-based real-time PCR. We used
a genome-specific primer (F3b) for the reverse transcrip-
tion (RT) step as the assay was to be used for quantita-
tion; random hexanucleotide primers, while possibly more
sensitive, are not compatible with RNA quantitation [21].
Preliminary tests showed that lower background and
higher sensitivity was achieved using a single primer exter-
nal to the PCR target than by using the same primers for
the RT and PCR steps. We sought to find primer sets that
were conserved in NSDV/GV but not in any of the other
nairoviruses, so that the assay could also be used as a diag-
nostic for NSDV/GV should the need arise in the future.
The location of the primers in the overall alignment are
shown in Figure 2, and the sequence of the primers used
are listed in Table 1, along with the reaction conditions
(annealing temperature and primer concentration). All
primer pairs were optimised for annealing temperature by
gradient PCR, and the optimal primer concentration
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(See figure on previous page.)
Figure 2 Identification of specific primers for NSDV/GV PCR. An alignment of all available S segments for nairoviruses (CCHFV, NSDV, GV,
Dugbe virus and Kupe virus) was made and extracted blocks from this alignment are shown to illustrate the differences between NSDV/GV and
other nairoviruses at the points selected for use as RT and PCR primers.
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determined (e.g. Figure 3B). Primer pairs F1-R1a and F2-
R2 both worked well with similar sensitivity (Figure 3C-F),
detecting fewer than 10 copies of target. We tested
whether the primers would react with Dugbe virus, since
0
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to measure viral genome RNA in the subsequent animal
experiment.

Real-time PCR measurement of cytokine mRNA levels
A set of primers specific for a range of ovine cytokines
was prepared, either using published primer pairs or
designed from ovine mRNA sequences taken from the
data base. The reaction conditions for each primer pair
were optimised as described for the viral RNA assay,
using an anchored oligo(dT) oligonucleotide ((T)16VN)
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units of virus were injected subcutaneously into 3 sheep
per isolate. The animals infected with GV isolate IG619
showed higher and more prolonged pyrexia as well as
profound leucopoenia (Figure 4). One of this group be-
came extremely weak and apathetic by 7 dpi, developing
clear hyperaemia in the coronary band (Figure 4), with
gum lesions and bloody diarrhoea; this animal was
euthanised at this point for post-mortem. A second ani-
mal with less severe clinical signs from the same group,
and one animal from the group infected with the tissue
culture-adapted NSDV isolate were sacrificed and post-
mortem examination carried out at the same time. The
animal with severe clinical signs had an enlarged spleen
and multiple internal haemorrhages on blood vessels
and the lining of the lower gut (Figure 4), while the
other animal from the same group showed less in the
way of pathology. The animals infected with NSDV-
Entebbe showed only a transient pyrexia and leucopoe-
nia, and the animal killed at 7 dpi showed no pathology
at post mortem. The remaining animals were kept for a
further four days, by which time temperatures had
returned to normal.
RNA was prepared from whole blood samples taken

directly into RNA stabilising solution (Ambion “Tem-
pus” vacutainers) and the relative level of viral genome
RNA in each sample determined. Due to the small sam-
ple numbers and the wide variation in virus load
observed in different animals, not all days in which virus
genome was detected appeared statistically different
from zero, but the pattern of responses was nevertheless
clear. Viral RNA levels were higher in the GV IG619-
infected animals, peaking at around 4 dpi and falling
rapidly after 7 dpi (Figure 5A). Similar results were
obtained from RNA isolated from a crude white cell
preparation (Figure 5B) consisting of blood from which
red cells were removed (buffy coat & plasma). Virus iso-
lation from this preparation was successful for GV at
A

Figure 5 Real-time PCR assay of viral genome RNA. Viral genome was
days post infection, for animals infected with NSDV isolate (light bars) or G
in value corresponds to an increase in viral RNA. n.d. = not determined (sam
contrast of the two virus isolates and indicates the probability that the diffe
combination of virus and dpi indicate a significant difference from 0 at a th
days of peak viral RNA, but the NSDV isolate could not
be recovered. Several white cell samples from NSDV and
GV-infected animals were found to be extremely toxic
to cell cultures.
The RNA prepared from whole blood which had

been stabilised with complete cell lysis immediately on
isolation was used to study cytokine mRNA levels
during the course of infection (Figure 6). Infection with
either isolate led to rapid increases in levels of IL-1β,
IL-8 and IL-12 mRNA, with a later increase in IFN-γ
mRNA levels as the infection was resolving. The patho-
genic virus isolate caused a noticeably higher level of
transcription of IL-6, IL-10 and TNFα mRNAs, and a
clear if transient suppression of transcription of IL-4
and TGFβ. No consistent effect was seen in the levels of
IL-18 or IFNβ mRNA in the animals of either group. A
set of three housekeeping genes (glyceraldehyde phos-
phate dehydrogenase (GAPDH), glucose-6-phosphate
dehydrogenase (G6PDH) and succinate dehydrogenase
(SDHA)) showed no variation between samples (not
shown), indicating that RNA recovery and the RT reac-
tions had not introduced any significant bias into the
results.

Discussion
It is clear from the studies in tissue culture that the
NSDV isolate has adapted in some way to allow it to
grow well in most of the cell lines tested. At the same
time, this isolate has essentially lost virulence in sheep.
These findings are in accord with those of Terpstra [6],
who found that NSDV of the 55th to 71st tissue culture
passage had greatly reduced virulence, while generating
a protective immune response in some animals. The na-
ture of the attenuation remains to be determined. The
attenuated virus clearly still grows in animals, though
less than the pathogenic virus. This is not due to a de-
fect in the replication machinery or assembly of the
B

quantitated in (A) whole blood and (B) white cells isolated on different
V isolate (dark bars). Values are expressed as 40-Ct so that an increase
ples lost before assay). The probability (p) value shown is that for the
rences arose by chance. A star above a group of bars for a particular
reshold of p = 0.05.



Figure 6 Effects of infection on transcription of cytokine mRNAs. Cytokine mRNA levels were determined in total blood RNA from animals
infected with the NSDV isolate (light bars) or the GV isolate (dark bars). Due to the variable initial Cts seen in samples from different animals,
values for day N are expressed as Ct(day 0)-Ct(day N), so that an increase in specific mRNA appears as an increase in the plotted value. The
probability (p) value shown is that for the contrast of the two virus isolates and indicates the probability that the differences arose by chance. A
star above a group of bars for a particular combination of virus and dpi indicate a significant difference from 0 at a threshold of p = 0.05.
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attenuated virus, as it is clear from the tissue culture
studies that this virus replicates well; direct comparisons
in which the two isolates are used to infect a compatible
cell line (Vero cells) have shown that the NSDV isolate
appeared to produce new viral protein and progeny vir-
ions slightly faster than the pathogenic isolate. Other
studies in our laboratory have shown that both isolates
block the actions of type 1 and type 2 interferons and
the induction of type 1 interferon [12] equally well, sug-
gesting that the decreased pathogenicity of the NSDV
isolate is not associated with any loss of function in this
area. One possible difference between the two isolates is
a change in one or both surface glycoproteins of the
virus to allow the adapted isolate to enter the cell lines
tested more easily, but which has reduced the effective-
ness of the virus at growing in the natural target cells in
the animal. Further studies to identify the native recep-
tor NSDV/GV are required before we can examine the
receptor preference of these two isolates.
There have been no detailed studies on the nature of

the pathogenesis in GV/NSDV infections; GV has only
recently been identified as a widespread infection in
India [3,9], and it is likely that the virus has been, in the
past, frequently ignored or confused with diseases having
similar signs in sheep/goats (e.g. peste des petits rumi-
nants, Rift Valley fever), on either continent. The pyrexia
seen here with the pathogenic isolate is similar to that
reported previously [1,6]; the profound leucopoenia has
not previously been reported for NSDV infections, al-
though it is a common clinical sign of viral hemorraghic
fever, and may be caused by the same large scale apop-
tosis of leukocytes seen in CCHFV-infected mice [22] or
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Ebola virus haemorrhagic fever [23]. Loss of white cells
has been reported in CCHFV-infected humans [24].
The cytokine responses observed in this study suggest

a similar pattern to that seen in CCHFV infections in
humans (reviewed in [25]) and in some other haemor-
rhagic fevers. The pathogenesis of CCHFV is poorly
understood, not least because most cases occur in areas
with limited clinical pathology facilities, and work on the
disease requires specialized buildings and equipment
(BSL4 containment). Nevertheless, serology on CCHF
patients has shown increases in IL-6 and IL-10 and
increased TNFα in clinically severe (hospitalised) cases
[26,27], and monocyte-derived dendritic cells infected
with CCHFV release IL-6, IL-10 and TNFα [28], while
we showed that pathogenic NSDV/GV was associated
with increases in these cytokines as well as of IL-12, and
a decrease in IL-4, all concordant with a Th1, proinflam-
matory response, which has been proposed for CCHFV
[26,29]. One study found reduced levels of IL-12 in
CCHF patients [30], but this may be a matter of timing,
since the levels of IL-12 in NSDV/GV infection declined
rapidly after 7 days. The observed cytokine responses
would be expected to give rise to lymphohistocytosis
(often associated with CCHF [29]), while both IL-6 and
TNFα are associated with the increase in endothelial
permeability that is common in viral hemorrhagic fevers
[31,32]. Elevated TNFα is found in a number of other
hemorrhagic fevers, including infection with Hantaan
virus [33], Ebola virus [34] or Puumala virus [35]. It does
need to be pointed out that most of those studies have
measured serum cytokine proteins, while in this instance
we have looked only at the levels of specific mRNAs,
since specific assays for ovine cytokines have not yet
been developed. This means that we will have missed
some changes due to cytokines secreted by other organs
(e.g. IL-6 produced by the liver); on the other hand, the
real-time PCRs are very sensitive, and the serial samples
allow us to pick up quite small changes in transcription
patterns.
The real-time PCR detection of viral genome was

much more sensitive than virus isolation, as has been
seen with other viruses. Interestingly, white cell RNA
was almost as sensitive as whole blood RNA for detect-
ing virus, especially the more wild-type, pathogenic iso-
late, despite the fact that low yields of RNA from the
white cell preparation meant that it was necessary to use
less of this RNA in the RT-PCR than whole blood RNA,
suggesting that the viral RNA in the blood is mostly
associated with white cells, and that EDTA blood or
other anticoagulated blood will be a suitable sample for
laboratory testing/diagnosis.
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