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Abstract

Many diseases are characterized by a long and varying sub-clinical period. Two main mechanisms can explain such
periods: a slow progress toward disease or a sudden transition from a healthy state to a disease state induced by
internal or external events. We here survey epidemiological features of the amount of bacteria shed during Mycobacterium
Avium Paratuberculosis (MAP) infection to test which of these two models, slow progression or sudden transition (or a
combination of the two), better explains the transition from intermittent and low shedding to high shedding. Often, but
not always, high shedding is associated with the occurrence of clinical signs. In the case of MAP, the clinical signs include
diarrhea, low milk production, poor fertility and eventually emaciation and death. We propose a generic model containing
bacterial growth, immune control and fluctuations. This proposed generic model can represent the two hypothesized
types of transitions in different parameter regimes. The results show that the sudden transition model provides a simpler
explanation of the data, but also suffers from some limitations. We discuss the different immunological mechanism that
can explain and support the sudden transition model and the interpretation of each term in the studied model. These
conclusions are applicable to a wide variety of diseases, and MAP serves as a good test case based on the large scale
measurements of single cow longitudinal profiles in this disease.
Introduction
Mycobacterium Avium subspecies Paratuberculosis (MAP)
is characterized by a long sub-clinical period. Cows are
typically infected early in life, but show clinical signs of
disease only a number of years later. Such a sub-
clinical to clinical transition is observed in many hu-
man and animal diseases, including, among many
others, Human Immuno-deficiency Virus (HIV) infec-
tions [1], Herpes virus infections [2-4], prion induced
diseases [5], Mycobacterium bovis [6], Mycobacterium
tuberculosis infections [7] and Bovine Leukemia Virus
(BLV) infections [8]. The observed transition from sub-
clinical to clinical disease can be interpreted in two
main ways: either the disease is slowly aggravating over
time, and the observed clinical symptoms are simply
the end-point of a slow deterioration process, or the
sub-clinical period is indeed latent, and some event led
to instability and the eruption of clinical disease.
Different infectious diseases have been characterized

to show in clinical progression one of the two scenarios
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defined above. Most chronic diseases, such as Hepatitis C
Virus (HCV) and HIV show slow progression to a clinical
stage (Acquired Immune Deficiency Syndrome (AIDS) in
HIV and cirrhosis in HCV) [9]. However, some such as
Herpes infections show no progression until either an ex-
ternal or internal event (other diseases, fatigue, pregnancy,
stress…) leads to a clinical stage [10]. Note that Herpes
Simplex Virus (HSV) has a relatively short clinical period
and is controlled within a relatively short period of time.
The classification of infectious diseases into these

two general categories has important therapeutic impli-
cations. If a disease belongs to the slowly progressing
group, then treatment before the clinical stage can pre-
vent or delay further deterioration. If on the contrary
the transition to the clinical stage is sudden, the opti-
mal scheme to prevent clinical disease would be pre-
vention of events that can induce the transition to the
clinical stage.
This distinction also has implications for the predictabil-

ity of future stages of clinical disease. In a slowly progres-
sing disease, the probability of future clinical signs can be
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estimated from the position in the path to a full blown
disease; while in a sudden transition, the probability for dis-
ease should be estimated by the frequency of events that
can induce such a transition.
Infections of dairy cows with MAP are generally assumed

to occur at a very young age [11]. Young calves show the
presence of so-called peyers’ patches that allow the early
uptake of MAP bacteria. The MAP infected calves remain
sub-clinical for years, or even lifelong. Clinical signs of
Johne’s disease, the clinical stage of MAP infections, usually
occur in adult cattle [12]. The onset of clinical signs often,
but not only, occurs after giving birth.
In order to evaluate which of these two disease progression

phenomena is most likely to occur with MAP infections, we
propose a relatively simple mathematical model, the transi-
tion model, and compare it to a set of observations regarding
infection and disease dynamics. We suggest here that a simi-
lar approach, assuming the presence of similar longitudinal
data, may be applied to other infectious diseases.
In the following section we discuss a set of observations,

and then compare multiple models to explain these
observations:

A)A Markov model with three different possible states.
B) A deterministic model for the growth of the

bacterial population.
C) Different versions of a stochastic dynamics as

described by Stochastic Differential Equations (SDE).

While all models presented here are simplistic models,
they can serve to differentiate between general scenarios.
Given the complexity of any disease and the number of
free parameters that can be introduced in mathematical
models, we can almost always find a complex enough
model that could explain a set of observations. We in-
tend to show here that a very simple model can explain
multiple observed phenomena depending on the choice
of parameters and the value of the chosen parameters.
Therefore the model proposed here aims to be a flexible
yet realistic model describing real life phenomena.

Materials and methods
Ordinary Differential Equation (ODE) solution
The ODE were solved numerically using Matlab fourth/
five order Runge Kutta, as applied in the MATLAB,
ode45 function assuming non-stiff equations.

Stochastic Differential Equation (SDE) solution
The SDE is modeled as an ODE with Ito noise unless
stated otherwise. It was solved using Matlab when after
each step an Ito noise is calculated. Specifically, a nor-
mal random variable with a zero mean and a variance of
σ2dt was added in each step of the ODE solution to
simulate a Wiener process [13], where dt is the time step
size. The ODE was first solved using a fourth order
Runge Kutta methods [14]. Then, noise was added.
Markov model
The Markov models were solved numerically using
Matlab, where the probability for each cow to die is
taken from a binomial distribution. The initial number
of the cows was 1000, and the probability to die was set
to 0.001.
Stylized observations in MAP epidemiology
In order to study the transition to the disease state, we
analyzed three farms with natural infections, and exam-
ined the time course of bacterial shedding for over 1000
cows. Note that experimental and natural infections vary
in many aspects [15]. The current analysis is only fo-
cused on the dynamics of natural infections. A detailed
description of the datasets used is found in the accom-
panying manuscript [15]. We here provide a short de-
scription of the observation.
Data for this study were gathered from three longitu-

dinal field studies, one longitudinal follow up in an
experimentally aggregated population and multiple ex-
perimental infection trials.

� Field study 1 comprised three dairy farms (100, 150, 300
lactating animals per farm) in the Northeastern US
[16]. Animals in study 1 were sampled twice per year
by fecal culture and four times per year by ELISA for
seven years after initial farm enrollment. For details of
study design, sample collection and preliminary data
processing, see previously published work [16-18].

� Field study 2 followed animals on a single dairy farm
with approximately 100 lactating Guernsey breed
cattle in Pennsylvania (US) for a period of 20 years
during an intervention program. Details of farm size,
MAP prevalence and study design are available in
previously published work [19]. Animals in this
population were tested semi-annually by fecal culture.

� Field study 3 followed animals on 17 Dutch dairy
farms (32 to 104 animals per farm with a total of
1072 cows) during a national monitoring program
over the course of 3.5 years. Animals were tested by
ELISA and fecal culture at 6 month intervals [20].
In order to simplify the analysis, we defined for each
cow three possible states: A) Non Shedding, B) Mild
shedding, and C) High shedding. We defined the last
stage to be any value above or equal to 50 Colony-
Forming Units (CFU) per gram of feces, and the mild
stage to be between 1 and 50 CFU per gram of feces.



Louzoun et al. Veterinary Research  (2015) 46:67 Page 3 of 11
Generally, cows that are shedding high numbers of bac-
teria show or will show clinical signs of Johne’s disease.
In the current analysis, shedding time-series had typical

intervals of 90–180 days, and the vast majority of cows
(94.5%) never reached high shedding. In the cows that
never reached high shedding (189/3397 ~ 5.5%), the vast
majority of cows (>90%) never went back to mild or low
shedding and had high shedding values until they were re-
moved from the herd due to culling or death.
A large fraction of the cows never presenting high shed-

ding levels may actually have been infected at least for some
time. Among the cows never producing high shedding
levels, 10% had some evidence of infection (Blood/Milk
Enzyme-Linked ImmunoSorbent Assay (ELISA), tissue
samples, or intermittent low or fluctuating intermediate
levels of shedding).
Some of the cows show an initial low shedding stage be-

fore moving on to high shedding values. However, the aver-
age time from the first non-zero level to high shedding is
one sample (less than 180 days) with a narrow distribution
(Figure 1A, dashed dotted black line). This distribution was
probably an upper limit, since given the long time differ-
ence between sampling points, the transition may actually
have been much faster than the time between two measure-
ment points.
Before high shedding started, the fraction of cows express-

ing a first high shedding event from the cows that were still
in the herd at a given age was computed, by dividing the
fraction of cows expressing first high shedding at a given
time point (Figure 1A, dashed gray line) with the number of
samples taken at the same time (Figure 1A, full black line).
This ratio increased until it was stabilized at day 1000 (ap-
proximately 3 years of age). From there on, it remained ap-
proximately constant for several thousand days (Figure 1B).
Beyond 3000 days, observations become scarce and the ratio
was noisy.
Figure 1 Experimental results. (A) Total fraction of observed cows in all farm
cows showing first clinical signs as a function of cow age (gray dashed line). T
as a function of time since first shedding (early shedding is not included in th
are still in the herd as a function of the cows age.
One can thus summarize the epidemiology of MAP by
the following stylized facts:

I. Most MAP infected cows never reach high shedding.
II. Within the MAP infected cows reaching high

shedding, the vast majority of cows never go back to
low/no shedding.

III.In the group of cows that are high shedders, these
animals reached the stage of high shedding fast
after initial shedding, compared to the length of the
sub-clinical period.

IV.The ratio to reach high shedding is constant after
approximately an age of 1000 days.

V. Most cows are infected and some occasionally shed
low levels of bacteria.

We have here equated clinical signs to high shedding
levels of MAP. While such shedding levels are often seen in
cows with clinical signs defining Johne’s disease, the pres-
ence of high shedding is not completely equivalent to a
transition to a clinical stage. Still, a clear relation between
high-shedding and clinical signs has been reported. A much
more detailed description of the epidemiology and clinical
signs can be found in the accompanying paper by Mitchell
et al. [15]. More details on the sampling scheme in the
herds can be found in Schukken et al. [18].

Transition model
The epidemiology of MAP as described above can be
represented as a three state model: The first state is
healthy, uninfected (H). The second state is sub-clinical
with potential low or intermediate shedding (S) and the
third state is high shedding with potentially signs of
clinical disease (C). The transitions in this model would
be from H to S and possibly back to H and from S to C,
with no possible transition back from C to S (Figure 2A).
s studied (full line) as a function of the cow age, and the fraction of
he black dashed dotted line is the fraction of cows showing clinical signs
is analysis). (B) The fraction of cows getting infected from the cows that



Figure 2 Descriptions of the different models. (A) Markov model of disease dynamics with three states: uninfected (H), Sub-clinical (S) and
cows showing clinical signs (C). The observations seems to show a unidirectional dynamics, where the empty arrows do not exist in reality or
have a very low probability. (B) Deterministic model of bacteria concentration growth (full lines) eventually leading to the transition of a threshold
(dashed gray line) and to clinical signs. (C) Dynamic model producing two states with a potential (full line) that has two attractors. The left attractor is
the sub-critical stage and the right attractor is the clinical stage (i.e. the stage where clinical signs are exposed). In this case the transition between the
two states is through random fluctuations.

Louzoun et al. Veterinary Research  (2015) 46:67 Page 4 of 11
Within such a model two scenarios are possible: Either
the transition is stochastic; leading to a variance between
the times it takes different cows to move to the C state, or
transition is deterministic, with a slowly deteriorating state
ending with the transfer to the clinical state (Figure 2B).
In the latter model, the difference between the times that
cows reach state C is either in the initial condition or in
the parameters of the disease.
In order to compare the two models, we propose a

generic ODE and SDE framework to study the parame-
ters required by each type of model and to determine
which model is more plausible.

Markov model
A Markov model can reproduce many of the observed
features. The fraction of cows that reach high shedding
is determined by p(S→C), which can be pre-defined to
be very low. The absence of cows that heal simply repre-
sent the fact that p(S→C) is practically 0. The constant
ratio is explicitly built into this model, and the low level
of shedding of most cows can be obtained by setting
p(S→H) to be very low (Figure 2A). However, it fails to
reproduce the sensitivity to the dose used to infect cows.
In the simulations of this model each cow that is in state
S goes to C with a probability of p(S→C). Cows in state
C cannot go back to state S. While in natural infection
circumstances, the total fraction of infected cows is
usually below 30%. In high-dose infection experiments,
the fraction of cows showing high shedding and clinical
signs in high-dose experimentally infected animals
reaches almost 100% (accompanying paper by Koets
et al. [21]). Another weakness of the Markov model is its
failure to explain the rarity of clinical diseases in the first
two years of MAP infection, although the vast majority
of MAP infected cows are infected in the first 360 days
of their life (Figures 3A and 3D).
One could amend these two weaknesses by explicitly

incorporating the difference between experimental and
natural infections into the model, and assuming that the
transition probabilities are determined by environmental
and internal elements. In such a model, the transition
probabilities would be much higher for experimental than
for natural infections. The lack of an initial refractory
period can be amended by introducing a larger number of
intermediate stages between the S and C stages.
Given enough such intermediate stages, the Markov

chain behavior approaches a random variable. Thus,
while technically correct, we will show that a random
variable description provides a simpler description of
such a stochastic process.



Figure 3 The behavior of the different models as a function of time. The first line represents the frequency of cows becoming sick at a
given time point (x axis) (A) for the first model- Markov process, (B) for the second model- the deterministic model, and (C) for the non- linear
growth model. The second line represents the x values (the bacteria level within a given cow) as a function of time for some cows, (D) for the
Markov process, (E) for the deterministic model and (F) for the non- linear growth model.
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Deterministic immune control model
The second model can be studied using a standard ODE
approach, since it does not contain stochastic elements.
The simplest model would be constant reproduction and
destruction rates for the bacteria in a single cow. For the
sake of simplicity, let us model the bacteria level within
a given cow, and denote it by x. Let us assume that the
bacteria are destroyed by the immune system or cleared
by any other mechanism at a rate of δ, and grows at a
rate of v, with a net difference of β = v − δ. If this is the
only interaction, the dynamics are determined by the lin-
ear equation:

x0 ¼ βx ð1Þ

with the exponential solution of:

x tð Þ ¼ x 0ð Þeβt ð2Þ

In this model, only two solutions would be possible:
either the bacteria are cleared from the host, or the bac-
teria are growing exponentially and the high shedding
occurs probably with the onset of the clinical signs. We
do not explicitly state the properties of the bacterial dy-
namics, once high shedding is reached, but the dynamics
at this stage have no significant effect on the conclu-
sions, since we assume that once this high shedding is
reached, the cow cannot go back to the transient or
healthy state. A simple description of the dynamics be-
yond this stage can be through logistic growth:

x0 ¼ βx−σx2; ð3Þ

where β = v − δ, as in Equation (1), and σ is the competi-
tion rate of the bacteria. The values of σ are low enough
(Figure 2B).
For negative values of β, the cow will stay healthy all

its life. For positive values of β, the time to reach the
onset of clinical signs would be proportional to 1/β. In
such a model, we would have to assume that in the ma-
jority of the population the value of β is negative and in
a small part of the population the value of β is positive.
Such a simple model would represent a model where
either the bacteria or the host are predisposed to induce
clinical signs, or no disease can occur.
Such a model is inconsistent with multiple observations:

A) In this model we do not expect cows not eventually
becoming ill to have bacteria in them after some
stage, since the bacteria frequency is expected to
decrease over time in these cows.

B) The ratio is not expected to be approximately
uniform in time, since there is no apriori reason to
assume that 1/β would be distributed uniformly for
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all positive β values (see for example the result for a
uniform distribution of β in Figures 3B and 3E).

C) In this model, the disease probability is not affected
by the initial bacterial dose during infection, in
contrast with the clear difference in the frequency of
sick cows in experimental and natural infection
studies, as mentioned above.

Non-linear model
The two approaches can be combined through a slightly
more complex model that includes two realistic features.
The first feature to include is an explicit non linear
growth rate in addition to the elements above. The
power of the non-linear growth rate can be any power
above one. We here use a power of two for the sake of
simplicity. This would represent a positive feedback of
the bacteria on itself. Such a feedback can occur if for
example, bacteria survive better within granuloma,
which in turn are produced by the bacteria. The model
would then become:

x0 ¼ −βxþ xγ ; γ ¼ 2 ð4Þ

Note that many different positive feedback loops can
produce a similar behavior, beyond the possible effect of
granuloma.
In contrast with the model of Equation (1), this model

can exhibit a transition to a disease even if β is positive,
if the initial value of x is higher than − β. This model is
basically equivalent to the previous model with the twist
that a cow that would not have become ill in the model
of Equation (1) will become clinically ill, if it is infected
with a high enough dose of bacteria. This seems to be in
agreement with reality, where experimentally high-dose
challenged cows have a much higher probability of pre-
senting high shedding and clinical signs than naturally
infected ones.
However, this model still suffers from two problems

discussed for the model in Equation (1), namely:

A) In this model we do not expect cows not eventually
becoming ill to have bacteria in them, since the
population that will never be sick has low x values,
and in this domain, Equations (1) and (4) are similar.

B) The ratio is not expected to be uniform, since there
is no apriori reason to assume that 1 / β would be
distributed uniformly. The non-linear term leads to
the divergence of the model in a finite time, and as
such would have a very limited effect on the spread
of times to high shedding.

Stochastic transition model
These two limitations can be solved using two slight mod-
ifications to the model: the introduction of a constant
source of bacteria (A) and the introduction of fluctuations
in the bacteria levels through a random noise term in the
bacterial dynamics, leading to the following Stochastic Dif-
ferential Equation (SDE):

x0 ¼ A−βxþ x2 þ σε tð Þx; ð5Þ

where ε(t) is a normal random variable with a noise level
σ. The constant source of bacteria can represent a reser-
voir of bacteria produced immediately following infec-
tion that releases bacteria to the blood or the gut [22].
The noise term represents random fluctuation represent-
ing the effect of an internal or external event (weather,
diseases, pregnancies, diet etc.) on the bacteria.
For the appropriate parameter values (as will be fur-

ther discussed), this model has two attractors: a low
shedding attractor determined by the value of A, and a
high shedding level, attractor at infinity (Figure 2C). The
noise level σ determines the probability to move from
the low attractor to the high one. Within this parameter
range, this model does indeed produce all the stylized
facts mentioned above:

� If β is high enough and the noise level σ is low
enough, most cows will never reach high shedding,
unless a very high dose is introduced as might
happen in the case of high-dose experimental chal-
lenge infections (Figures 4B and 4C).

� Within the cows reaching high shedding, the vast
majority of cows never go back to low/no shedding.
This asymmetry in the transition is a result of the
different properties of the two attractors. When the
system resides in the low bacterial level attractor, it
has a constant probability of moving to the high
attractor, and a large enough fluctuation is enough
to move it to the high attractor. The opposite is not
true. When the system resides at the high attractor,
it will diverge in a finite short time, and will thus
never be able to return to its initial state.

� The third observed feature is the fast emergence of
clinical signs after initial shedding. Such a fast
growth is indeed expected from the non-linear
growth term, which as mentioned above will lead a
finite time divergence of x.

� The non-zero value of A prevents the system from
falling to the x = 0. Thus, in this model, every cow
that was infected will only become uninfected again
if A = 0.

� The ratio to reach high shedding is constant after
a period and then slightly deteriorates (Figures 3C
and 3F).

While this model explains most observed features, it
has one weakness, which is sensitivity to the value of the



Figure 4 The behavior of the stochastic transition model for different parameter values. (A) and (B) potential barrier for different
parameter values (black lines) and the resulting dynamics (red lines). Time is on the y axis and x values are on the x axis. For low β and high σ
transition to high shedding will be very rapid (A), while for high β and low σ it may never happen (or may take a very long time) (B). (C) Fraction
of cows reaching high shedding at t = 1000. For high σ and low β the fraction is close to 1 (orange), while for low σ and high β the fraction is
close to zero (blue). There is an intermediate region, where a limited fraction of cows becomes high shedders. The black line represents the
parameter values that equal to the distance between the low attractor and the unstable fixed point.
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β parameter. To test the validity range of this model, we
performed a sensitivity analysis of the model.

Parameter sensitivity
The following two sections are quite mathematical and
the biological conclusions of the paper can be understood
without them. We here performed a sensitivity analysis to
the results of Equation (5) and explained the results. The
dynamics of Equation (5) are determined by the values of
A, β and σ. For any non-zero value of A, the bacterial level
will always remain positive. However, beyond this direct
effect, the contribution of A can be scaled into the other

parameters, by changing, x→x=
ffiffiffiffi
A

p
; t→

ffiffiffiffi
A

p
t to obtain:

x0 ¼ 1þ σε tð Þ−β½ �xþ x2; ð6Þ

where β, σ have been rescaled. There are, up to a scaling
factor, only two real free parameters in this system. In
the absence of the noise (σ = 0), Equation (6) can have
either a single attractor at infinity or two attractors, one

at infinity and one at β
2 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4=β2

q� �
. The two attractors

solution can only occur if β > 2. Thus, with a weak immune
response (low value of β), all cows will become rapidly high
shedders regardless of the parameter σ. For a strong
immune response (high value of β), there is a range of σ
where only a few cows become high shedders within a rea-
sonable amount of time since the moment the animals be-
came infected with MAP.
In order to understand the relation between the prob-

ability to get infected and the parameters β and σ, the
dynamics of x can be rewritten as:

x0 ¼ −
dV xð Þ
dx

þ σε tð Þ; ð7Þ

where V(x) is the potential limiting x to be in the low at-
tractor. Assuming x is close to the minimum potential,
the size of σ must be similar to the distance between the
low attractor and the unstable fixed point. The σ value
equal to this distance is denoted by a black line in Figure 4C.
If σ is much smaller than this distance, we expect the aver-
age time to express high shedding and clinical sign to be
high, while if it is larger than this distance, this time to high
shedding will be low.
In order to check that this is the case, we simulated

the dynamics in Equation (6) for different σ values, and
computed the average time to high shedding and clinical
signs (Figure 4C). As expected, a sharp transition occurs
near the black line, where the σ value is equal to the
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distance between the low attractor and the unstable
fixed point. The dynamics at the two sides of this line
are exemplified in Figures 4A and 4B respectively. One
can clearly see from Figure 4C that for any σ value, the
range of β value where the transition probability is nei-
ther too low nor too high is limited. This is the main
caveat of this proposed model.

Non uniform beta distribution
As mentioned above, in the rescaled units β and σ should
be of the same order for a finite yet not too large transi-
tion to clinical signs probability to emerge. This can obvi-
ously be tuned into the system. However, since β
represents the immune response, which is affected by a
large number of factors, there is no a priori biological rea-
son that these parameters should have a similar range.
However, one can assume that β has a distribution in

the population and that β varies among cows. Assume
for example that β has a uniform distribution between 2
and 10. As was mentioned earlier, for values of β below
2, the cows become sick with a probability of 1. More-
over, the transition will be very rapid. The cows with
high β values will never be sick, even for high noise
levels and thus will not be observed as sick cows, only
the cows with β values close to 2 are of interest. How-
ever, given the wide range of β values, each cow will re-
quire a different noise level to become sick, widening
the distribution of σ values will produce a constant frac-
tion of sick cows. In other words, if β is not limited to a
Figure 5 Fraction of cows and std of time to disease as a function of
the noise level σ in the model with a wide β distribution (black line), and t
dashed line). The simulations were run on a scale of 100 time units in arbit
the fraction of cows getting ill is constant and low and the standard devia
limited to a precise value of σ or β to reproduce the observed dynamics.
single value, this will automatically enlarge the range of
realistic σ values. The results of a model with such a uni-
form distribution are shown in Figure 5.

Biological interpretation of the model
The model presented here contains four elements:

� linear bacterial growth (i.e. a constant term in the
ODE).

� Destruction of the bacteria by the immune system.
� Supra-exponential bacterial growth (i.e. a supra

linear term in the ODE).
� Random fluctuations.

The first term is expected in any model where bac-
teria grow with no saturation. Similarly the second term
is expected in any model where bacteria are affected by
the immune response of the host, including killing of
bacteria by B or T cells. The two last terms are slightly
more complex.
The non-linear bacterial growth can occur whenever

existing bacteria facilitate the growth of more bacteria.
In other words, there is a positive feedback of the
current bacteria concentration on the future bacterial
growth. The opposite may also happen, where bacterial
growth prevents or reduces killing of existing bacteria.
Such mechanisms are actually observed in MAP where
bacteria organize in large granuloma and within these
granuloma, they are protected against killing [23].
noise level. Fraction of cows reaching high shedding as a function of
he standard deviation of the time it takes to reach an ill state (gray
rary units. One can see that for a wide range of σ values (two orders),
tion of the time to reach sickness is high. Thus the model is not
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Moreover, cytokines secreted by infected cells limit the
growth of active macrophages and reduce transition of
macrophages to an activated macrophage. Such feedback
loops are all expected to produce a non-linear growth rate.
The random fluctuations used here were multiplica-

tive. In other words, random elements increase or de-
crease the net growth rate of the bacteria, either through
a weakening of the immune response following other
diseases or stressful events such as giving birth or
transport events [24,25]. A similar random event may
take place within the intestinal tract when conditions are
suddenly very favorable.

Discussion
From an evolutionary point of view, latency seems to be
the optimal solution for pathogens, since it ensures the
long term survival of their growth environment. Viru-
lence can thus be treated as an accident of the pathogen
life cycle. Indeed, many models were developed, to ex-
plain the emergence of virulence from an evolutionary
point of view (e.g. [26-30]). However, the focus of these
models was mainly on the evolutionary fitness advantage
induced by virulence, and not the specific mechanism
driving virulence. In parallel the issue of transition to
AIDS in HIV was studied and multiple complex models
were proposed [31,32], all having a common theme of a
slow time scale inducing the long sub-clinical period
between HIV infection and AIDS. Similar models were
developed for Tubercle Bacillus (TB) [33].
The role of the immune system is crucial, with a quite

general agreement that sub-clinical stages are basically
induced by immune control, and that the transition to
clinical disease is often associated with an escape from
immune control [34-36]. Similar arguments have been
raised in very different domains, such as the role of the
immune response in tumor immune-surveillance and
immune-editing [37,38].
However, a mathematical model of the basic mecha-

nisms driving the exit from latency in general and
methods to validate these conclusions at the epidemio-
logical level are missing. We present here a comparison
of multiple mathematical models, where the objective
was to model the MAP shedding patterns. Ultimately,
the model is gauged against observed within host im-
mune dynamics on the observed MAP shedding patterns
in cows from real-life populations. All models that were
used contained a single variable (the bacteria). All other
elements, such as the immune response, were assumed
to be constant. Within these models, we show a model
with two attractors: one representing the low bacteria
concentration state and one representing the high shed-
ding state. Stochastic transitions between these two attrac-
tors provided the simplest of the observed features, mainly
a relatively flat probability of high shedding and clinical
signs after an initial low or intermittent shedding period
and a rapid transition to high shedding.
Other models could also be adapted to give similar re-

sults, but this would require more complex models and
assumptions on the distribution of parameters. The two-
state model presented here is far from being the only
possible model in this category. In recent years many
mathematical models have been studied that describe a
wide variety of different systems: biological systems
[39-41], physical systems [42-44], economic systems
[45-47], etc. many of these models include two stable
states [48-50]. The precise model to be used is of limited
importance as long as the general probabilities to move
from one state to the other are maintained.
While all models presented here are obviously overly

simplistic, the objective of these models was to describe
the essence of MAP within-host infection dynamics.
More complex models may better reproduce many de-
tails of the dynamics, but will require many more, often
unsupported, assumptions.
An important conclusion from these models is that

the best method to prevent the transition to high shed-
ding, in infected cows is to limit external events or other
diseases. This can be checked by comparing the fraction
of infected cows that develop clinical signs in different
conditions.
A caveat of the proposed models is that they do not

explicitly integrate the dynamics of the immune re-
sponse. Thus, they cannot be directly compared to ex-
perimental observation on the relationship between
immune response properties and MAP shedding pat-
terns. A second caveat is the absence of early shedding
in all models studied here. Infected calves are known to
have an early shedding phase shortly after initial infection.
However in all models studied here the development is
unidirectional from non-infected to infected to high shed-
ding. These two caveats can be solved using a model that
includes the acquirement of a specific adaptive immune
response following infection. However, there does not
seem to be enough immuno-epidemiological observations
at this stage to justify a more complex model.
While we here focused on MAP, the conclusions from

this analysis are relevant to a large group of diseases with
a similar epidemiology. We used a few criteria, such as the
fraction of cows becoming high shedders, the dose re-
sponse and within cow infection dynamics. It would be of
interest to check if diseases can be broadly divided into
groups fitting each type of model presented here.
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