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Abstract 

Climate change ranks among the most important issues globally, affecting geographic distributions of vectors and 
pathogens, and inducing losses in livestock production among many other damaging effects. We characterized the 
potential geographic distribution of the ticks Rhipicephalus (Boophilus) microplus, an important vector of babesiosis 
and anaplasmosis globally. We evaluated potential geographic shifts in suitability patterns for this species in two 
periods (2050 and 2070) and under two emissions scenarios (RCPs 4.5 and 8.5). Our results anticipate increases in 
suitability worldwide, particularly in the highest production areas for cattle. The Indo‑Malayan region resulted in the 
highest cattle exposure under both climate change projections (2050), with increases in suitability of > 30%. This study 
illustrates how ecological niche modeling can be used to explore probable effects of climate change on disease vec‑
tors, and the possible consequences on economic dimensions.
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Introduction
Rhipicephalus (Boophilus) microplus is the most impor-
tant tick in transmission of bovine parasitic diseases 
around the world [1]. The principal hosts for this species 
are cattle, but interactions have been shown with buffalo, 
horses, donkeys, dogs, deer, sheep, and goats [2–4]. High 
incidence of this tick is associated with economic losses, 
particularly in cattle [5]. This tick is responsible for trans-
mission of the protozoa Babesia bovis and B. bigemina, 
and the bacterium Anaplasma marginale, which are the 
main pathogens of bovine babesiosis and anaplasmosis, 
respectively [6–8]. These diseases induce extreme ema-
ciation in livestock, culminating in death.

Losses of US$13–18 billion are caused by these patho-
gens globally each year [9, 10]. Developing countries have 
seen the strongest consequences caused by R. microplus 
(e.g. in South America; [5, 11]). Such countries gener-
ally lack effective control mechanisms for the tick, so 
that economic losses are exacerbated and livestock pro-
duction is reduced markedly [12]. Estimates regarding 
milk losses caused by this tick species are 90.2 L per cow 
yearly; this reduction and losses in milk products gener-
ate production drops of around US$922 million yearly 
[13]. Cattle at high risk regarding this tick are valued at 
US$3 billion annually in Brazil alone [5], one of the most 
important developing countries in terms of livestock, 
responsible for exporting ~ 43 million tons of milk and 
meat [14].

Population growth and establishment are related to 
the following: (1) historical contingencies and geo-
graphic barriers [15]; (2) biological factors such as host 
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availability, competition; and (3) environmental condi-
tions such as temperature and humidity [16, 17]. Future 
changes in climate include modifications of temperature 
and precipitation regimes; these environmental factors 
are crucial in delimiting species distributions and deter-
mining the success of population establishment [18]. 
Changes in these factors may modify the life cycle, abun-
dance, and distribution potential for R. microplus [19, 20] 
and other disease vectors or species with importance in 
human and animal health [21–23]. Small changes at local 
levels can increase the risk of pathogen transmission [24]. 
Climate change generates a series of biological modifi-
cations in vector biology and consequently in pathogen 
incidence, which may lead to shifts in disease distribu-
tions [25].

Ecological niche models (ENM) are commonly used 
for understanding species’ potential geographic dis-
tributions under different scenarios of environmental 
change [26–28], under Grinnell’s niche concept [29]. 
The hypothesis of environmental factors being crucial 
in determining distributions of vectors and pathogens 
is supported amply by empirical studies [21, 22, 30–34]. 
However, many based-ENM studies of related disease 
arthropods have not used environmental variables related 
directly to the physiology of these species instead relying 
on general climate datasets that are easily available. In 
this paper, we assess possible potential areas for R. micro-
plus under present-day and future climate conditions for 
two greenhouse gas emissions scenarios (RCP 4.5 and 
RCP 8.5) in two time periods (2050 and 2070), including 
a variable known to be crucial to the physiology of this 
species. We evaluate potential hotspots for this species 
and their coincidence with livestock concentrations to 
determine the most important risk areas under climate 
change for bovine parasitic diseases transmitted by this 
tick species.

Materials and methods
Occurrence data
Occurrences were obtained from two different sources: 
(1) published data based on searches of different data-
bases (Web of Science, Scopus, and Google Scholar); 
we used the keywords “Rhipicephalus”, “Rhipicephalus 
microplus”, “Boophilus microplus” and “Rhipicephalus 
(B.). microplus”. We also obtained (2) data available on 
biodiversity information platforms: Global Biodiversity 
Information Facility [35], SpeciesLink [36], and Vector-
Map [37].

Data were collected for the period 1970–2018. Data 
lacking georeferencing (obtained mainly from published 
papers) were assigned coordinates via searches in Google 
Earth. We reduced biasing effects of spatial autocorrela-
tion in occurrence data using a distance filter of 22  km 

in the spThin R package [38]. We chose a random 50% 
of the occurrence data for calibrating models, and used 
the remaining 50% to evaluate the models. Our initial 
1487 occurrences for R. microplus in America reduced 
to 531 with spatial filtering (Figure  1). We also consid-
ered occurrence data for this species from Africa [39, 40]; 
these 145 African occurrences were used as independent 
evaluation data, with the same spatial filter, for an addi-
tional model evaluation.

Environmental data
We used 15 bioclimatic variables from WorldClim ver-
sion 1.4 (Table 1) [41], excluding four variables known to 
include spatial artefacts [42]. WorldClim variables were 
derived from climatic data for 1950–2000. To add a vari-
able known to be important to the physiology of this spe-
cies [43], we obtained relative humidity (RH) from the 
Coupled Model Intercomparison Project [44], which we 
downscaled by the Delta Method, commonly used in cli-
mate data [45]. To summarize future conditions, we used 
outputs from 20 general circulation models (GCM) avail-
able from Climate Change, Agriculture and Food Secu-
rity [46] (Additional file  1). We used two greenhouse 
gas emissions scenarios (RCP 4.5 and RCP 8.5) for two 
time periods (2050 and 2070) to explore model-to-model 
variation. The environmental data were used at a spatial 
resolution of 0.2° (~ 22 km) under both present-day and 
future conditions. Dimensionality was reduced by cal-
culating Pearson correlations over the entire calibration 
area, removing one from each pair of variables with cor-
relations ≥ 0.80. Uncorrelated variables were according to 
different variable sets: we used all possible variable com-
binations (120 sets) for model calibration and evaluation 
[47]. Variables used as candidates for inclusion in models 
therefore included annual mean temperature, tempera-
ture seasonality, minimum temperature during the cold-
est month, annual precipitation, precipitation during 
the driest month, precipitation seasonality, and relative 
humidity.

Model calibration and evaluation
Models were calibrated with the kuenm R package, run-
ning [48] Maxent 3.4.1 [49] and using model selection 
approaches [50]. We used significance, performance 
(omission rate), and model complexity to choose optimal 
parameter settings from among candidate models. All 
possible combinations of linear (l), quadratic (q), product 
(p), threshold (t), and hinge (h) feature types were tested, 
as were different regularization multiplier values (0.1, 0.3, 
0.5, 0.7, 1, 2, 3, 5, 7, and 10). Models are built using all 
possible combinations of the seven environmental vari-
ables. Hence, we explored a total of 5400 candidate mod-
els. Significance testing was via partial ROC [51], with 
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acceptable omission error of E = 0.05. Finally, we evalu-
ated the model complexity using the Akaike information 
criterion with a correction for small sample size (AICc), 
via a code derived from Warren et al. [50].

We used the accessible area concept as a means of 
choosing the area over which to calibrate our models [15, 

52], using a buffer of 200 km around occurrence data as 
a proxy to this area (Figure  1). Final models were sum-
marized as the median of 10 bootstrap replicates of the 
model corresponding to the best model parameter set, 
and transferred to future conditions worldwide. We used 
the kuenm package [48] both to evaluate final models and 

Figure 1 Calibration area and the known distribution of Rhipicephalus (Boophilus) microplus (points). Occurrence records used in 
model calibration (test and training) are shown; occurrences in Africa were used as independent data to evaluate the accuracy of model transfer 
worldwide.
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to transfer models to future conditions. Areas present-
ing extrapolative conditions were identified with a MOP 
analysis [53], comparing conditions between calibration 
and transfer areas across the 20 GCM × 2 RCPs × 2 time 
periods that made up our future scenarios.

Model transfers were summarized and simplified via 
a binarization process. Median model transfers were 
binarized using an acceptable omission rate of E = 0.05. 
Binary maps were used to determine climate uncer-
tainty in the models, which we summarized as agreement 
among multiple scenarios between present and future to 
determine areas of stability. We used a threshold of ≥ 60% 
(12) of agreement among GCM as a relatively clear signal 
of presence or absence of suitable conditions. Finally, to 
provide an additional model evaluation, we used occur-
rence data from the African range as an evaluation of the 
model’s predictive ability. We obtained cattle abundance 
data from the Food and Agriculture Organization of 
the United Nations (FAO) [54] and Robinson et  al. [55] 
to evaluate implications of future changes in the range 
of the tick for cattle production. We used different cat-
egories (cattle abundances: Additional file 2) to evaluate 

possible impacts of the tick under future projections. We 
evaluated the highest potential range expansion of the 
tick with regards to the different world cattle production 
areas.

Results
We evaluated 5400 candidate models; 3687 of these mod-
els were statistically significant (P < 0.05), of which 1348 
showed good performance (i.e., omission error ≤ 0.05); 
however, a single model was selected on the basis of 
low complexity (AICc = 10,398.67), in that the differ-
ence in AICc between it and the next best model was 
large (26.4786). The best model included all feature types 
(lqpth: Linear, Quadratic, Product, Threshold and Hinge) 
with a regularization parameter of 1. Variables selected 
were annual mean temperature, temperature seasonality, 
annual precipitation, precipitation of driest month, and 
relative humidity (Table 1). The biggest relative contribu-
tion of environmental variables to the model was from 
annual mean temperature (26.6%), whereas the small-
est contribution was from annual precipitation (14.6%; 
Table  1). Our independent evaluation (i.e., predicting 
the African distribution) was significantly different from 
random predictions according to the pROC evaluation 
(P < 0.001). Omission rate was 7.5%, with only 11 failures 
out of 145 evaluation points.

In the Americas, the present-day model shows high 
suitability for R. microplus in North and South America: 
in Brazil (central, western, southern), Uruguay (north-
ern), Argentina (northern, eastern), and across Cen-
tral America, Mexico, and the southern USA (Figure 2). 
Models also indicate high suitability across much of sub-
Saharan Africa, except for the interior of South Africa 
and Botswana. Western Europe, Southeast Asia, and 
coastal parts of Australia also had high suitability (Fig-
ure 2), especially inside the calibration area.

Model transfers to future conditions (Additional files 3, 
4, 5 and 6) show high stability of suitability in currently 
suitable regions, and increases of suitability in the Neo-
tropics (Argentina, Brazil, Colombia, Venezuela), Eura-
sia (northern and eastern Europe; Indo-Malayan Region 
(India, Bhutan, Nepal, Myanmar, China), North America 
(Mexico, southeastern USA), and including Afrotrop-
ics (West Africa, Sudan, South Sudan, Chad). Under a 
moderate climate change scenario (RCP 4.5) we noted 
increases in suitability with low uncertainty by 2050 
and 2070 (Additional files 3 and 4); some areas of South 
America (e.g., Amazonas state in Brazil) show increased 
suitability. Under the high-emissions scenario (RCP 8.5), 
in 2050, increases in suitability were broadly distributed 
in the Nearctic, Neotropics, Palearctic, Afrotropics, and 
the Indo-Malayan region (Additional files 3 and 5). For 
2070 (Additional files 4 and 6), increases in suitability 

Table 1 Climate variables used in ecological niche 
modeling of current and future potential distributions of 
Rhipicephalus (Boophilus) microplus 

Bioclimatic variables from the WorldClim data archive (version 1.4; Hijmans et al. 
[41]) and relative humidity [44] were used for modeling. Five  variablesa were 
selected for modelling via our model selection processing [47].
b Variables excluded because they have unrealistic spatial artefacts [42].

Acronym Description % variable 
contribution

Bio1a Annual mean temperature 26.6

Bio2 Mean diurnal range

Bio3 Isothermality

Bio4a Temperature seasonality 21.4

Bio5 Maximum temperature of warmest month

Bio6 Minimum temperature of coldest month

Bio7 Temperature annual range

Bio8b Mean temperature of wettest quarter

Bio9b Mean temperature of driest quarter

Bio10 Mean temperature of warmest quarter

Bio11 Mean temperature of coldest quarter

Bio12a Annual precipitation 14.6

Bio13 Precipitation of wettest month

Bio14a Precipitation of driest month 19.2

Bio15 Precipitation seasonality

Bio16 Precipitation of wettest quarter

Bio17 Precipitation of driest quarter

Bio18b Precipitation of warmest quarter

Bio19b Precipitation of coldest quarter

RHa Relative humidity 18.1
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were in much the same regions. The areas that presented 
extrapolation risk from the calibration area are shown in 
Figure 3.

Our models show high suitability in the present day, 
and increases in suitability in the future, in places with 
the highest abundances of cattle around the world 
(Tables  2 and 3, Additional file  2). Low cattle abun-
dances (0 to 1 individuals/10  km2) were the areas most 
likely to see increases in suitability for the tick, with a 
possible increase of ~ 21% in the world for this category 
(Tables  2 and 3); the Palearctic, Neotropical, and Indo-
Malayan regions were those most likely to see increases 
in suitability. Highest cattle abundances (> 100 individu-
als/10  km2) in the Indo-Malayan region were projected 
to see suitability increases of ~ 34% in 2050 and ~ 16% in 
2070 (Tables 2 and 3). All study regions show increases in 
suitability (~ 1% to ~ 134%); major changes were noted in 
the Nearctic Region (Tables 2 and 3).

Discussion
Babesiosis and anaplasmosis may be related to the same 
environmental factors as R. microplus because they 
depend on this tick as a main vector [6–8]. Different wild 
animals serve as hosts for this tick; the best-studied is the 
white-tailed deer Odocoileus virginianus [3]: livestock 
reservoirs of these pathogens include goats [4]. Host spe-
cies are important for dispersal, although this tick is not 
a specialized ectoparasite; this generalist habit facilitates 
dispersal by wild and livestock animals [6–8].

The potential distribution of R. microplus is related to 
a diverse suite of ecological and environmental factors 
around the world [1, 17, 19, 20, 56–60]. Moreover, in 

order for the tick populations to spread in a region, indi-
viduals must first be introduced, then go through a phase 
of adaptation to the local hosts and then reach a popula-
tion density that allows mating and reproductive success 
of adults [1, 31, 58]. Complex relationships with other 
species, especially wild hosts, are particularly relevant for 
individual dispersal and population occurrence in suita-
ble environments [3, 61]. Our models show suitable areas 
in Europe and Asia, places without species present; how-
ever, the environmental conditions correspond to species 
establishment. Climate factors affect the ticks life cycle 
and geographic distribution [62, 63]. The most important 
factors identified in our model construction were annual 
mean temperature, precipitation seasonality, and relative 
humidity [17].

Climate seasonality is an important factor in the R. 
microplus life cycle; variation in this factor influence the 
number of generations (three to four per year), increas-
ing the population size and potentially facilitating disper-
sal [62, 63]. We found important environmental variables 
similar to those identified in field analyses of this species 
[17]. Annual mean temperature, seasonality in precipita-
tion, and variables derived from humidity were crucial to 
these models [17]; however, no previous study has used 
relative humidity in model construction, which is a fun-
damental variable affecting this species’ development [64, 
65].

Currently, R. microplus does not occur in some 
regions that our models signaled as suitable, which can 
be explained by several factors; for example: (1) some 
trophic activities or other biological interactions that 
reduce the possibility of occurrence in Europe, Australia, 

Figure 2 Present-day suitability for Rhipicephalus (Boophilus) microplus according to the best ecological niche model, under current 
conditions and calibration area (detail). 
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and parts of northern Asia. (2) Historical conditions in 
particular, major dispersal barriers, decrease the access 
of this species to Europe, Australia, and northern Asia. 
In addition, for the species to be introduced into these 
areas, it is important to consider the number of individu-
als required to overcome demographic limitations and 
produce permanent populations, sufficient host density 
to support tick populations, and immune responses of 
the host [17].

Economic losses in cattle are generated by tick infes-
tations in cattle herds around the world. Countries with 
high cattle populations have experienced significant 
losses in meat production (e.g., Brazil, with US$3.4 billion 
per year [5]; Tanzania, with US$364 million per year [66]; 
and Mexico, with US$573 million per year [67]). Thirty-
eight percent of the world’s cattle population is located 
in India; babesiosis is a common disease there, driving 
important economic losses [68]; indeed, ~ 4% of cattle 
in northeastern India died from this disease [69]. Our 
results anticipate increases in suitability for the tick, par-
ticularly in northern India, potentially increasing losses 
under future climates (Tables  2 and 3, Figures  2 and 
3, Additional files 3 and 4). The Indo-Malayan regions 
include several countries with high potential cattle expo-
sure showing increases in tick suitability (Additional files 
3 and 4) and high abundances of cattle, particularly south 
India, Sri Lanka, Myanmar and Thailand (Tables 2 and 3, 
Additional file  2). Increases in suitability for the tick in 
West Africa (Côte d’Ivoire, Benin), increases cattle expo-
sure to babesiosis and anaplasmosis [31]; of particular 
note is that importation of Brazilian cattle in these coun-
tries creates a situation optimal for tick establishment 
a situation confirmed by independent models from De 
Clercq et al. [31].

Changes in the potential distribution of this tick in 
relation to climate change have been discussed and docu-
mented in previous studies [17, 19, 56]. However, our 
work used an uncertainty evaluation that explored 20 
GCM, two greenhouse gas emission scenarios, and two 
time periods (Additional files 3 and 4): we also used inde-
pendent data for model testing (from Africa) and incor-
porated novel data on relative humidity. Our model is 
strongly consistent and accurate (Additional files 3, 4, 
5), but has two strong limitations. (1) We did not include 
biotic factors (interactions) in the model, especially 
because this species requires a host; however, given the 
broad host range of this tick, we did not have any logi-
cal means of assessing all the different possible hosts in 
the world. (2) We did not consider relationships between 
numbers of ticks and numbers of cattle in different 
regions of the world. However, our models provide a view 
of suitability for the tick under future conditions, which 
we translate into metrics of cattle exposure for different 
cattle populations worldwide. The results were consist-
ent with future potential increases of this invasive species 
around the world, despite the biotic factors not evaluated 
in our models (e.g. vegetation, host availability and bio-
logical interactions).

Figure 3 MOP analysis of extrapolation risk from the calibration 
area under current conditions to the whole world under future 
conditions. Blue values represent strict extrapolative areas. Red 
values represent levels of similarity between the calibration area and 
the different RCPs scenarios of projections.
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Table 2 Proportion of modification of R. microplus suitability to climate change scenarios according to zoogeographic 
regions and livestock abundance categories worldwide [54, 55] for 2050 scenarios 

Values with increases greater than 10% are shown in italics.

Scenarios Regions Cattle abundance (individuals/10 km2)

0–1 1–5 5–10 10–20 20–50 50–100 > 100 All 
categories 
(average)

RCP 4.5 Afrotropic 1.57 5.78 6.47 6.23 5.86 6.93 7.75 5.80

Australasia 6.26 6.10 0.91 1.41 9.94 7.81 3.99 5.20

Indo‑Malayan 3.02 2.82 3.55 3.27 5.64 11.44 31.55 8.76

Nearctic 16.09 3.62 2.87 4.52 4.40 2.46 25.48 8.49

Neotropic 9.42 5.71 4.87 5.61 5.70 4.44 8.95 6.39

Palearctic 9.05 2.83 3.22 4.32 3.13 0.79 0.49 3.40

RCP 8.5 Afrotropic 0.60 1.96 1.33 2.19 1.98 1.23 1.72 1.57

Australasia 1.53 0.50 0.06 0.16 0.61 0.00 0.00 0.41

Indo‑Malayan 3.39 2.34 4.24 4.36 6.04 6.54 6.28 4.74

Nearctic 33.12 2.50 1.90 1.62 5.65 32.89 134.87 30.36

Neotropic 2.69 2.68 2.40 2.33 1.90 1.29 0.59 1.99

Palearctic 22.88 26.74 12.78 10.35 6.61 4.80 1.78 12.28

Both Afrotropic 4.58 10.21 14.19 11.24 7.80 7.77 9.97 9.39

Australasia 13.65 5.97 8.18 7.26 9.26 7.92 2.91 7.88

Indo‑Malayan 25.17 12.77 11.14 11.91 18.24 20.53 34.57 19.19

Nearctic 50.34 4.25 2.50 1.68 2.35 8.62 3.01 10.39

Neotropic 29.87 13.68 12.14 9.71 7.82 5.44 8.87 12.50

Palearctic 32.03 40.84 18.65 15.71 13.09 8.95 4.51 19.11

Table 3 Proportional modifications of Rhipicephalus (Boophilus) microplus suitability to climate change scenarios divided 
by zoogeographic regions and livestock abundance categories worldwide [54, 55] for 2070 scenarios 

Values ≥ 10% are shown in italics.

Scenarios Regions Cattle abundance (individuals/10 km2)

0–1 1–5 5–10 10–20 20–50 50–100 > 100 All 
categories 
(average)

RCP 4.5 Afrotropics 3.23 8.86 10.68 10.75 9.04 5.10 1.96 7.09

Australasia 7.09 7.30 2.97 3.51 9.65 0.90 2.60 4.86

Indo‑Malayan 5.73 6.43 8.60 7.84 11.35 16.99 47.84 14.97

Nearctic 11.66 2.19 1.81 2.03 1.22 0.82 0.00 2.82

Neotropics 19.67 11.25 11.39 9.47 8.88 6.95 11.44 11.29

Palearctic 6.60 6.31 5.16 5.63 3.19 1.64 0.48 4.15

RCP 8.5 Afrotropics 0.09 0.81 0.50 0.75 1.16 4.03 5.97 1.90

Australasia 5.19 1.71 0.47 0.26 0.32 0.76 0.10 1.26

Indo‑Malayan 6.03 1.50 1.94 2.17 2.51 4.81 3.47 3.20

Nearctic 86.15 2.25 1.11 0.78 1.73 4.97 4.03 14.43

Neotropics 0.95 2.02 1.33 1.45 1.76 1.06 0.09 1.24

Palearctic 39.17 38.77 26.97 18.92 13.40 4.01 2.68 20.56

Both Afrotropics 2.05 3.96 6.83 4.66 3.68 6.87 11.02 5.58

Australasia 10.49 3.33 8.50 7.70 13.94 10.34 7.29 8.80

Indo‑Malayan 18.37 10.01 9.32 9.93 15.52 13.45 16.74 13.33

Nearctic 77.68 4.88 1.88 1.39 1.23 5.50 3.01 13.65

Neotropics 14.48 5.44 5.14 4.15 3.31 1.91 3.70 5.45

Palearctic 38.34 42.56 21.47 23.21 18.73 13.60 6.33 23.46
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Additional file 1. General circulation models used in ecological niche 
modeling projections in RCP 4.5 and RCP 8.5 for 2050 and 2070. 

Additional file 2. Cattle abundances categorized from FAO and Rob-
inson et al. [54] from different zoogeographic regions in the world 
to evaluate Rhipicephalus (Boophilus) microplus suitability in each 
of them under future climate change and present-day scenarios. 
Abundances are represented by number of individual heads of cattle per 
10 km2.

Additional file 3. Current and potential future distributions of Rhipi-
cephalus (Boophilus) microplus for two emissions scenarios (top, RCP 
4.5; bottom, RCP 8.5) in 2050. Dark blue: areas predicted to be suitable 
in present‑day and with a strong chance of suitability in the future (> 12 
GCM). Light blue: areas predicted to be suitable in present‑day but with 
reduced probability of presence in the future (< 12 GCM). Red: areas 
unsuitable in the present‑day, but with a strong chance of suitability in the 
future (> 12 GCMs). Pink: areas predicted to be unsuitable in present‑day 
but have slight chance of suitability in the future (< 12 GCM). White: areas 
unsuitable in both present‑day and future scenarios.

Additional file 4. Current and potential future distributions of Rhipi-
cephalus (Boophilus) microplus for two emissions scenarios (top, RCP 
4.5; bottom, RCP 8.5) in 2070. Dark blue: areas predicted to be suitable 
in present‑day and with a strong chance of suitability in the future (> 12 
GCM). Light blue: areas predicted to be suitable in present‑day but with 
reduced probability of presence in the future (< 12 GCM). Red: areas 
unsuitable in the present‑day, but with a strong chance of suitability in the 
future (> 12 GCM). Pink: areas predicted to be unsuitable in present‑day 
but with a slight chance of suitability in the future (< 12 GCM). White: areas 
unsuitable in both present‑day and future scenarios.

Additional file 5. Suitability for Rhipicephalus (Boophilus) microplus 
in 2050 under RCP 4.5 and 8.5 according to the best ecological niche 
model. 

Additional file 6. Suitability for Rhipicephalus (Boophilus) microplus 
in 2070 under RCP 4.5 and 8.5 according to the best ecological niche 
model. 
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