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Abstract 

Typical two‑dimensional (2D) culture models of skeletal muscle‑derived cells cannot fully recapitulate the organiza‑
tion and function of living muscle tissues, restricting their usefulness in in‑depth physiological studies. The develop‑
ment of functional 3D culture models offers a major opportunity to mimic the living tissues and to model muscle 
diseases. In this respect, this new type of in vitro model significantly increases our understanding of the involvement 
of the different cell types present in the formation of skeletal muscle and their interactions, as well as the modalities 
of response of a pathological muscle to new therapies. This second point could lead to the identification of effec‑
tive treatments. Here, we report the significant progresses that have been made the last years to engineer muscle 
tissue‑like structures, providing useful tools to investigate the behavior of resident cells. Specifically, we interest in 
the development of myopshere‑ and myobundle‑based systems as well as the bioprinting constructs. The electri‑
cal/mechanical stimulation protocols and the co‑culture systems developed to improve tissue maturation process 
and functionalities are presented. The formation of these biomimetic engineered muscle tissues represents a new 
platform to study skeletal muscle function and spatial organization in large number of physiological and pathological 
contexts.
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1  Structural organization and repair process 
of skeletal muscle tissue

Skeletal muscle is the most abundant tissue, represent‑
ing 35–45% of the total body mass [1]. It functions to 

Open Access

*Correspondence:  marie‑helene.perruchot@inrae.fr
1 PEGASE, INRAE, Institut Agro, 35590 Saint‑Gilles, France
Full list of author information is available at the end of the article

Table of Contents
1  Structural organization and  repair process of  skeletal 

muscle tissue
2  Limitations of  2D cultures and  interest of  bioengi‑

neered skeletal muscle tissue
3  Development of 3D model of primary muscle‑derived 

cell culture: myosphere
4  Development of  3D skeletal muscle models: 

myobundle
4.1  Native ECM proteins‑based scaffold

4.2  Fibrin hydrogel
4.3  Methacrylated gelatin hydrogel
4.4  Methods to  increase engineered skeletal muscle 

maturation and function
5  3D bioprinting, another strategy to generate functional 

skeletal muscle tissue constructs
6  Exploitation of engineered muscle tissues in the study 

of farm animal species and prospects of application
References

http://orcid.org/0000-0002-6608-9445
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13567-021-00942-w&domain=pdf


Page 2 of 12Dessauge et al. Vet Res           (2021) 52:72 

generate force that enables locomotion, posture, swal‑
lowing, and breathing. It is composed of a mixture of 
terminally differentiated fibers that represent the basic 
contractile units grouped into bundles. These multinucle‑
ated muscle fibers are highly oriented with one another 
and correspond to a single long cylinder. They are each 
contacted by a single motor neuron (MN) and express 
different myosin heavy chain (MHC) isoforms and meta‑
bolic enzymes that are responsible for their own contrac‑
tile properties [2]. They are individually surrounded by a 
connective tissue layer and by an important vascular net‑
work that allows the supply of nutrients. Then, the func‑
tional characteristics of skeletal muscle are directly linked 
to the organization of this complex framework of fibers, 
MNs, extracellular connective tissue matrix, and blood 
vessels [3]. Post‑natal skeletal muscle is a terminally dif‑
ferentiated tissue with very little turnover of nuclei, less 
than 1–2% of them being replaced per week [4]. Moreo‑
ver, it was characterized by a remarkable ability to ensure 
a rapid and extensive repair in response to injury, pre‑
venting the loss of muscle mass. This repair, which cor‑
responds to a finely orchestrated regenerative process, 
requires the activation of various cellular responses nec‑
essary for the formation of a well innervated, fully vas‑
cularized, and contractile muscle apparatus. Among 
them, activation of satellite cells (SCs), which are undif‑
ferentiated myogenic progenitors residing between the 
basal lamina and sarcolemma [5], is a key element in this 
process [6, 7]. Following muscle fiber damage, they acti‑
vate and proliferate before differentiating and fusing with 
existing fibers in order to repair the injured area [8, 9]. 
Since their first observation in the Tibialis anterior mus‑
cle of the Frog [10], several markers have allowed identifi‑
cation of SCs in many species including Human [11, 12], 
Mouse [13], Rat [5], Monkey [14], Pig [15], Cattle [16], 
Chick [17, 18], Salamander [19], and Zebrafish [20] and 
Rainbow trout [21] (Table 1).

2  Limitations of 2D cultures and interest 
of bioengineered skeletal muscle tissue

Conventional two‑dimensional (2D) cell culture relies on 
adherence to a flat surface, typically a Petri dish of glass 
or polystyrene, to provide mechanical support for the 
cells. Cell growth in 2D monolayers allows for access to 
a similar amount of nutrients and growth factors present 
in the medium, which results in homogenous growth 
and proliferation, in highly controlled condition. In 2D 
systems, primary cultures of myoblasts (i.e., myogenic 
precursors corresponding to natural descendants of SCs) 
have been developed in Frog [22], Rat [23], Mice [24] 
and Humans [25] as well as in a wide range of species, 
including Monkey [26], Pigs [27], Cattle [28, 29], Chicken 
[30] and Fish [31–33] (Table 1). If such cultures are well 

known and under control, in return they display several 
critical limitations, among which a non‑sustainability 
over the long‑time, a lack of native muscle architecture, 
and a difficulty to produce spontaneous contractions [34, 
35]. Then, they do not fully recapitulate the structural 
organization and function of adult muscle that are yet 
essential for the muscle contraction and functionality [36, 
37]. This limits the use of 2D culture systems in biological 
studies as well as in in vivo replacement of pathological 
or damaged tissues [38, 39]. In addition, cell culture with 
current conventional planar in vitro systems presents sig‑
nificant limitations related to their low surface to volume 
ratio, the lack of pH, gas and metabolite concentration 
control and is therefore not scalable [40]. Hence, devel‑
opment of 3D in vitro systems is motivated by the need 
to alleviate ethical considerations demanding a reduction 
in the use of animals and improve outcomes in human 
patients by identification of novel therapeutic thanks to 
drug screening and cell‑based assays [41, 42].

3  Development of 3D model of primary 
muscle‑derived cell culture: myosphere

Over the last decades, the efficacy of cell‑based therapeu‑
tic strategies for muscle disorders as well as the produc‑
tion of generic knowledge on the biology of muscle stem 
cells have been hampered by recurrent difficulties in iso‑
lating and propagating tissue‑resident stem cells in their 
native state, which are yet essential for relevant treatment 
and banking of biological material. Indeed, in conven‑
tional 2D culture conditions, expanded muscle‑derived 
cells (MDCs) rapidly mature and lose their ability to 
engraft [43]. Also, the mechanisms balancing quiescence, 
self‑renewal, and differentiation of SCs are difficult to 
analyze in  vitro because their staminality is lost when 
they are removed from the niche and is not adequately 

Table 1 List of studies describing experimental protocols 
to isolate satellite cells and to expand primary myoblasts in 
different species.

Specie Satellite cell Myoblast

Frog [10] [22]

Rat [5] [23]

Mouse [13] [24]

Human [11, 12] [25]

Monkey [14] [26]

Pig [15] [27]

Cattle [16] [28, 29]

Chicken [17, 18] [30]

Salamander [19] [31]

Zebrafish [20] [32]

Rainbow trout [21] [33]
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reproduced in the 2D culture models currently available. 
For these reasons, culturing method in suspension was 
developed with the objective that the 3D cell–cell inter‑
actions would provide a niche‑like environment to help 
maintain cells in a more primitive state [44].

Myosphere corresponds to 3D structure generated 
from freshly isolated MDCs and that gradually appeared 
from 3 days after initial seeding of mononucleated cell 
suspension as recapitulated in Figure  1 [45–49]. In the 
first days after muscle tissue isolation resulting from 
mechanical and enzymatic dissociation, small round cells, 
mainly individual, were seen floating among the debris. 
Over the next few days, the single or pair cells become 
small clusters of few cells, then larger clusters of dozens 
of cells and later forming rounded sphere‑like structures. 
These myospheres were initially 25–50 μm in size and 
continued to grow over time reaching sizes as large as 
200–400 μm. Then, myospheres are propagated in  vitro 
as free‑floating clusters of rounded cells exhibiting dif‑
ferent diameters. They can be passaged every 20–30 
days by trapping spheres that are > 100 μm, dissociating 
them with dispase/collagenase and then plating the cells 
at a density of 1–10 ×  105 cells/mL. The newly replated 
myosphere cells will form new free‑floating spheres over 
a period of several days. Characterization of myosphere‑
based cultures revealed that they contain myogenic cells 
expressing α7‑integrin, Pax7, Myf5 and MyoD but also 
non‑myogenic cells defined as α7‑integrin−, platelet‑
derived growth factor receptor  alpha+ and stem cell 
antigen‑1 (Sca‑1)+. It was suggested that this second cell 
type corresponds to an interstitial cell population [47, 
50]. Interestingly, it was determined that cell derived 
from myospheres behaved similar to primary myoblasts 
in that they mostly express Pax7, Myf5 and MyoD as 
well as form multinucleated myotubes when cultured 

adherently [51]. However, some differences in terms of 
proliferation rate, differentiation capacity and pheno‑
type were presented between the myospheres generated 
by several groups, depending on isolation procedure and 
culture media used [45, 46, 50, 51]. Notably, the addition 
of leukemia inhibitory factor to the growth medium of 
the myospheres enhances proliferation and dramatically 
increases the proportion of cells expressing Sca‑1 [45].

Interestingly, it was established that some of MDCs in 
myospheres are able to maintain a pre‑myogenic state 
in culture over time [47]. As an example, myospheres 
generated from human neck skeletal muscle cells can be 
cultured and expanded for 20 weeks or 18 passages even 
when obtained at an average donor age of 63 years, dem‑
onstrating a sustained self‑renewal capacity [49]. Fur‑
thermore, culturing myospheres can be isolated from 
the muscles of young and old mice and can be obtained 
over extended periods of time (3–4 months) [51]. It 
was evoked that the 3D adhesive cell–cell interactions 
involved in maintaining the sphere‑like myosphere struc‑
tures are also involved in maintaining their longevity 
in vitro [50].

Thanks to their 3D structure, myospheres allow 
exhibiting cell–cell interactions and spatial organiza‑
tion between cell types closer to that observed in tis‑
sues compared to classical 2D culture systems. In 
contrast to 2D MDC‑derived primary cultures in 
which progenitors are rapidly lost due to their low divi‑
sion time compared to the other resident cell types, a 
main advantage attributed to the 3D formation of myo‑
spheres resides in the maintaining of cell proportion 
between progeny [49]. Another advantage is that the 
initial culture procedure is simple and relatively gentle 
with little manipulation of the freshly extracted MDCs. 
This contrasts with many SC isolation procedures that 

Figure 1 Phase contrast microscopy of classical myosphere cultures. A When cultured in suspension, progenitor/stem cells initially correspond 
to very few small and refringent rounded cells. Within the first days (days 1–3) some of them could appear in clusters of two to four cells. B Then 
(days 3–6), they began to grow according to atypical modalities as they aggregated into microspheroid colonies composed of a few dozen of 
joined cells that occasionally could also appear superposed. C In the following days (days 6–10), these floating myospheres pursued to grow in size 
and number, reaching several hundreds of cells. D After 10 days, the myospheres appeared as spheroid complexes that are very dense in cells and 
voluminous. They can be maintained by serial passages as suspended myospheres for at least several weeks without losing their proliferation ability. 
Scale bars: 25 µm. Related to the work done on in vitro characterization of canine MuStem cells [26].
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incorporate the use of flow cytometry, which is known 
to activate the SCs and thus alters their gene expres‑
sion profile [52, 53]. As an example, the expression of 
notch1, which plays a pivotal role in determining SC 
behavior, was shown modified in SCs [54]. Regarding 
the contribution of myospheres to muscle regenera‑
tion, it was shown that myosphere‑derived cells partici‑
pate in forming new muscle fibers and generating SCs 
when injected into damaged muscles [24, 46]. Also, the 
authors mentioned that they exhibit a grafting capac‑
ity superior to that of myoblasts. Consistent with these 
findings, Westerman et al. demonstrated that injection 
of  GFP+ myosphere‑derived cells into dystrophic mice 
muscle generate the formation of GFP expressing mus‑
cle fibers 2 weeks later [47]. Interestingly, these results 
pointed out that myospheres‑derived cells have the 
capacity to regenerate injured muscle in  vivo in addi‑
tion to their ability to retain stem cell properties during 
in vitro expansion, supporting that myosphere‑derived 
cells may be highly useful in regenerative medicine for 
skeletal muscle diseases.

4  Development of 3D skeletal muscle models: 
myobundle

Since pioneering works leading to myotube formation 
in a collagen gel [55] and 3D scaffold construction [56], 
the field of skeletal muscle tissue engineering has greatly 
developed. Engineering approach is based on the exploi‑
tation of two main components corresponding to a bio‑
material that ensures suitable tissue scaffolding and the 
tissue‑resident cell types. Concerning bioscaffold mate‑
rials, they must be inert, resorbable by biodegradation 
processes, modifiable, and exhibit minimal cytotoxic‑
ity [57, 58]. Also, optimal biomaterials should contain 
a high surface area for cell adhesion, support mechani‑
cal integrity of the tissue, minimize diffusion distances, 
and degrade once there is no need for structural support 
[59, 60]. Bioscaffolds harvested from naturally occurring 
sources (i.e., extracellular matrix [ECM]) or created by 
artificial means using synthetic materials such as poly‑
L‑lactic, polylactic‑glycolic, and polyurethane [61–63]. 
The main advantage of the synthetic scaffolds over natu‑
rally derived materials resides in the fact that they can be 
precisely characterized and fabricated with great control 
over physical and chemical properties. Hybrid devices 
have also been attempted as scaffolds for muscle tissue 
generation [64, 65].

The three main types of scaffolds used for the pro‑
duction of myofiber bundles are successively presented 
below before the presentation of bioengineering proto‑
cols developed to increase the maturation and function‑
ality of engineered skeletal muscle.

4.1  Native ECM proteins‑based scaffold
Interactions between cells and ECM, which mainly con‑
sists of collagen I‑IV, fibrinogen, laminin and glycoami‑
noglycans as well as an assortment of growth factors, 
contribute to critical cellular processes during normal 
muscle growth and regeneration [66, 67]. Moreover, nat‑
urally derived hydrogels (collagen, fibrin, Matrigel) were 
shown to well support high density and 3D spreading of 
muscle cells [68], unidirectional cell alignment through 
the application of geometric constraints [69] and mac‑
roscopic tissue contractions [70, 71]. Then, native skel‑
etal muscle‑derived ECM proteins have been largely 
used in the past as a component of scaffold material [63, 
72]. As an example, in a 3D setting, the Bursac’s lab has 
tested various matrix protein type (collagen I/fibrino‑
gen/Matrigel) with different concentrations in hydro‑
gel‑based neonatal rat skeletal muscle bundles to assess 
their respective impact on tissue structure, generating 
of contractile force and intracellular  Ca2+ handling [73]. 
Engineered muscle tissue has been prepared based on a 
hydrogel molding technique initially developed by Rhim 
et al. [74]. Tissue molds were fabricated by longitudinally 
splitting a 25 mm long section of 4.7 mm diameter sili‑
cone tubing and sealing both ends with a small piece of 
polydimethylsiloxane (PDMS). Molds were sterilized 
with ethanol, submerged in 0.2% (w/v) pluronic F‑127 
solution to prevent gel adhesion, dried with nitrogen, 
and placed in a standard 6‑well tissue culture dish. Velcro 
tabs, which served as gel attachment sites and allowed 
generation of passive longitudinal tension in the bundles, 
were sterilized with ethanol and secured at both ends of 
the mold with stainless steel pins. After initiation of the 
fibrin gel polymerization as a result of thrombin addition, 
mixed cells/gel solution was injected into a silicone tissue 
mold and incubated at 37 °C until gelation. The polym‑
erized cell/gel bundles were then maintained in growth 
medium for 5 days, then switched to low serum differen‑
tiation medium. After two weeks of culture, the muscle 
bundles consisted of highly aligned and cross‑striated 
muscle fibers and exhibited standard force–length and 
force‑frequency relationships achieving tetanus at 40 Hz. 
The use of fibrin yielded higher isometric tetanus ampli‑
tude as compared to those measured in collagen I‑based 
bundles. Adding Matrigel to collagen hydrogels improved 
engineered muscle structure while high collagen content 
has adverse effects on muscle maturation. Also, higher 
fibrin and Matrigel concentrations synergistically yielded 
further increase in active force generation. Unlike col‑
lagen that has been initially used by most of the labora‑
tories, fibrin was presented as to be the best choice as a 
matrix for tissue engineering of skeletal muscle due to its 
ability to be extensively remodeled and degraded [75, 76] 
as well as its stiffness comparable to that of native muscle 
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[77, 78]. It promotes angiogenesis and neurite extension, 
which is critical for the formation of a fully functional 
engineered muscle for in vivo applications [53, 79].

4.2  Fibrin hydrogel
In 2015, the Bursac’s lab generated the first biomimetic 
human skeletal muscle culture system (“myobundle”), 
using cells casted within a fibrin/Matrigel matrix and 
anchored to nylon frames [80]. The myobundles began 
to spontaneously twitch after 3–5 days culture and con‑
tained densely packed and aligned myofibers surrounded 
at the periphery of fibroblasts after 2‑week culture. 
Mature structure of the myofibers was evident by the 
expression of MHC, cross‑striations, and multiple myo‑
genin + nuclei. Of functional importance, acetylcholine 
receptors (AChR) were present at the myofiber surface. A 
fraction of cells continued to express the SC marker Pax7, 
suggesting regenerative capacity as previously described 
in a rat culture model [81]. In the same way, the Gilbert’s 
lab demonstrated an enhancement of fiber maturation 
and AChR clustering following myogenic differentiation 
in 3D culture [82]. The authors established primary myo‑
genic progenitors and  CD56− fibroblast‑like cells from 
human biopsy tissues and seeded them at defined ratios 
either within fibrin/Geltrex hydrogel (3D) or into 12‑well 
tissue culture plastic dishes coated with Geltrex (2D) or 
fibrinogen/Geltrex blend. Muscle cell laden hydrogels 
were formed within a PDMS channel and anchored at 
each end of the channel to the nylon hooks of Velcro fab‑
ric, which act as artificial tendons and establish uniaxial 
tension during 3D tissue remodeling and differentiation. 
While 2D muscle fiber cultures were regionally aligned 
but globally disorganized, a uniform alignment of stri‑
ated muscle fibers was determined along the tension axis 
in the 3D tissues. In contrast to the muscle fibers estab‑
lished in 2D cultures, those derived in 3D culture pro‑
gressively increased in diameter over 3 weeks in culture 
while maintaining fiber alignment and assembled con‑
tractile apparatus. In addition, an upregulated expression 
of the fast and slow adult isoforms of MHC was noted, 
suggesting a gradual sarcomere structural maturation. 3D 
human muscle tissues were capable of generating active 
force in as early as 10 days of differentiation as evidenced 
by spontaneous twitches, which were not observed in 2D 
cultures. ACh stimulation produced an immediate teta‑
nus response in 3D tissues suggesting an abundance of 
active AChRs, while the response of 2D muscle fiber cul‑
tures at this time point was significantly less and inevita‑
bly resulted in muscle fiber damage.

Maffioletti et  al. generated 3D artificial human skel‑
etal muscle by embedding in fibrin hydrogels and dif‑
ferentiating pluripotent cells‑derived myogenic cells 
(from healthy and dystrophic patients) [80], using an 

adaptation of a cardiac tissue engineering platform 
to direct orientation of cells along the force axis [83]. 
Over 10 days, cells remodeled the matrix and gener‑
ated a 7–8 mm long strip of tissue containing struc‑
tures that resemble skeletal muscle fibers. Similarly, 
under optimized 3D culture conditions, myogenic 
progenitors derived from multiple human pluripotent 
stem cell lines were shown to reproducibly form func‑
tional skeletal muscle tissue bundles containing aligned 
multi‑nucleated myotubes that exhibit positive force‑
frequency relationship and robust calcium transients 
after electrical or ACh stimulation. Bundles exhib‑
ited increased structural and molecular maturation, 
hypertrophy, and force generation for 4 weeks in vitro. 
Following implantation into hindlimb muscle of immu‑
nocompromised mice, bundles demonstrated an abil‑
ity to survive, progressively vascularize, and maintain 
functionality [84]. In  vitro formation of such bundles 
represents an interesting microphysiological platform 
for human muscle disease modeling and drug develop‑
ment. In agreement with these findings, other studies 
confirmed that the use of 3D environment is associ‑
ated with longer culture times [80, 84, 85], increased 
myotube size [86], increased protein content [55], and 
improved maturation of MHC gene expression com‑
pared to 2D cultures [84].

4.3  Methacrylated gelatin hydrogel
Hosseini et  al. determined that a micropatterned meth‑
acrylated gelatin (GelMa) hydrogel was a suitable 
substrate to align C2C12 myoblasts and to generate func‑
tional skeletal muscle tissue [87]. GelMA solution was 
prepared from the dissolution of the gelatin type A in 
methacrylic anhydride. To generate micromolded GelMA 
hydrogels, it was poured into polystyrene Petri dish after 
that a PDMS stamp corresponding to a photoresist mold 
of a 100‑μm grooves/50‑μm ridges pattern was applied. 
The pattern, which was made on a silicon wafer by a con‑
ventional photolithographic technique [88, 89], meas‑
ured 50‑μm in height and covered a surface of 1  cm2. The 
GelMA pattern was then photocrosslinked under UV 
and the PDMS stamp was gently removed. C2C12 myo‑
blasts that were cultured on the micropatterned GelMA 
hydrogels were significantly more aligned on day 3 of 
culture than the control cells cultured on non‑patterned 
hydrogels. GelMA hydrogels were presented as high‑per‑
formance materials for tissue engineering developments 
by allowing cultured cells to migrate, proliferate, and 
contact with each other. Also, their mechanical proper‑
ties are tunable and their high diffusion capacity through 
their pores is advantageous for cell nutrition and waste 
removal.
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4.4  Methods to increase engineered skeletal muscle 
maturation and function

Electrical and mechanical stimulations. Although 
myobundles recapitulated many of the morphological 
and functional features of native skeletal muscle, their 
size and isometric contractile properties were, how‑
ever, inferior to those of native adult muscle, revealing 
an incomplete muscle maturation [90, 91]. Under long‑
time electrical stimulation, primary culture of myoblasts 
developed on fibrin or polylactic acid micropatterns dis‑
played enhanced myotube formation and a greater rate of 
differentiation [92, 93]. In addition, increased myobundle 
maturation and force were established in rodents [94, 95] 
and humans [96] 3D‑engineered muscle tissues. For that, 
electrical stimulation was performed between weeks 1 
and 2 of myobundle differentiation using 1‑h stimulation 
bouts separated by 7‑h rests. Specifically, myobundles 
were continuously electrically stimulated at 1 Hz or with 
a 0.5 s, 10 Hz pulse train every 5 s, thus delivering the 
same total amount of stimulation pulses. Similarly, use of 
cyclic loading or stretch protocols revealed that mechani‑
cal stimulation also induces muscle hypertrophy and pro‑
tein content [97] as well as increases engineered muscle 
differentiation and function [98].

Co‑culture systems. To improve the formation of 
mature muscle tissues with higher functionalities, dif‑
ferent co‑culture systems have been developed in bio‑
engineering protocols. C2C12 myoblasts cultured in 
micropatterned GelMa hydrogels with PC12 neural cells 
showed improved differentiation with enhanced myotube 
formation, alignment and length [99]. At the molecular 
level, an up‑regulation of markers specific to muscle dif‑
ferentiation, maturation and neuromuscular junctions 
(NMJ) were also noted. Improved vascular organization 
was established in tri‑culture composed of myoblasts, 
fibroblasts and endothelial cells [100]. Other studies, 
using a co‑culture of C2C12 and endothelial cells, have 
shown the development of prevascularized tissue with 
the formation of a capillary network, allowing a quick 
functional anastomosis when transplanted [101]. The 
NMJ is a highly organized synapse formed between a 
MN axon and a muscle fiber, which is responsible for 
the transmission of efferent signals from projecting MNs 
to muscle fibers in order to actuate fiber contraction. In 
2019, the Gilbert’s lab reported a method integrating 
architectural cues with co‑culture techniques to cre‑
ate an environment conducive to the de novo formation 
of the adult human NMJ as early as 2 weeks [82]. MN 
clusters were mixed with myogenic progenitors in the 
hydrogel mix, and seeded together into the PDMS chan‑
nels. After 10 days in differentiating media, co‑cultures 
self‑organized such that myogenic progenitors fused to 
form multinucleated, aligned and striated muscle fibers 

and the MN clusters were positioned at the periphery 
of muscle bundles. Importantly, the MNs were capable 
of regrowing neurites that were found in contact with 
AChR clusters on muscle fibers. Western blot analysis 
confirmed expression of MuSK and rapsyn proteins, two 
decisive synaptic proteins for mediating agrin‑induced 
synaptogenesis. More and larger AChR clusters in 3D 
co‑cultures were observed as compared to 3D muscle 
alone cultures, particularly at sites where MN neurites 
contacted muscle fibers. Overall, in side‑by‑side studies 
of muscle fibers cultured in 2D, the authors showed that 
the 3D culture system enables long‑term maintenance of 
maturing muscle fibers in culture.

5  3D bioprinting, another strategy to generate 
functional skeletal muscle tissue constructs

Over the last years, bioprinting techniques have emerged 
to produce 3D platforms with or without cells. Their 
main advantages lie on their reproducibility, suitability, 
accuracy but also the ability to bioengineer various func‑
tional tissue constructs with complex geometry by build‑
ing up cell‑laden hydrogels in a layer‑by‑layer fashion 
[102–104]. Several microfabrication methods have been 
developed to generate biomimetic scaffolds that can pro‑
vide the same topological cues as muscle tissues at the 
micron scale, such as electrospinning, micromolding, 
photolithography and soft lithography methods [105]. 
Briefly, electrospinning is a method widely applied in the 
synthesis of tissue engineering scaffolds as it can both 
control the size, morphology of nanofibers by adjusting 
the technical parameters and use almost every soluble 
polymer and additive [106–108]. Using a wet electrospin‑
ning system, a core–shell 3D composite scaffold that con‑
tained an aligned nanofiber yarn core was designed [109]. 
In this context, C2C12 myoblasts showed well align‑
ment and correctly developed into a 3D elongated myo‑
tube formation. The micromolding approach displays 
the advantages of short processing time and easy‑to‑use 
procedures with the possibility to employ either elasto‑
mers such PDMS or other materials as templates for the 
creation of tissue constructs [110]. Sinusoidally waved/
patterned PDMS substrates were shown to allow C2C12 
myoblasts forming well‑aligned myotubes after 6 days. 
Same results have been obtained on alginate microfibers 
with patterned ECM protein adhesive sites (fibronectin) 
generated using micromolding and a microcontact print‑
ing system [111]. Photolithography is a process to trans‑
fer geometric features of a mask to a substrate by using a 
photoresist and a light source [112–114]. When photore‑
sists are exposed to UV irradiation with or without opti‑
cal mask, the patterns are transferred from optical mask 
to materials, allowing the production of scaffolds for tis‑
sue engineering [115, 116]. Soft lithography relies on the 
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use of a soft elastomeric stamp with a micropatterning 
whom multiple copies can be prepared by photolitho‑
graphic process, making it more convenient and cheaper 
than standard photolithography [117, 118].

In parallel, 3D bioprinting methods have been widely 
studied the last decade in order to stack living muscle 
cells and biomaterial layer‑by‑layer that helps the cell 
growth and cell signals through modulation of the cell–
cell interaction and cell–matrix interaction [119]. These 
methods represent a powerful manufacturing technol‑
ogy for tissue engineering because they can easily fabri‑
cate bulk and complex tissue, mimicking the structure 
and endowing cells with a biomimetic 3D microenviron‑
ment. The conventional methods can be classified into 
three main groups corresponding to inkjet, microextru‑
sion, and laser‑assisted methods [120, 121]. Concerning 
the inkjet method, the most commonly used approaches 
to eject bioink onto a substrate are the thermal‑ and 
piezoelectric‑nozzle approaches. The resolution of the 
printed constructs may however be limited due to the 
nozzle‑injection style and material characteristics [122]. 
With the microextrusion method, the techniques typi‑
cally used for the dispersion of the biomaterials onto a 
substrate are pneumatic‑, piston‑ and screw‑dispensers 
[123]. Construction of large free‑form tissue structures 
appeared to be quite difficult due to inadequate mechani‑
cal stability and printability [124]. The laser‑assisted 
method has the advantage to be nozzle‑free, which can 
avoid clogging observed with the previous methods, but 
is limited by the requirement of a rapid hydrogel gela‑
tion to achieve high‑resolution printed patterns, result‑
ing in low flow rates [125]. Recently, an optimization of 
the bioinks was operated to increase their adequate phys‑
icochemical and biocompatible properties before, dur‑
ing, and after 3D printing, which appeared essential to 
ensure the success of the 3D bioprinting [126]. In com‑
parison to all these developments of 3D tissue structures 
from hydrogels, an in  situ aligned/micro‑topographical 
structure was recently produced using a decellularized 
extracellular matrix (dECM) as a biochemical component 
and a modified 3D cell printing process [127]. The dECM 
was derived from the decellularization of porcine skel‑
etal muscles and chemically modified by methacrylate 
process to enhance mechanical stability. Following seed‑
ing in this hydrogel‑free scaffold, C2C12 myoblasts were 
shown to be aligned and differentiated with a high degree 
of myotube formation. Another type of tissue‑specific 
dECM bioinks was presented to efficiently induce cell dif‑
ferentiation and tissue development [128]. Indeed, com‑
pared to conventional collagen bioink‑printed constructs, 
this new bioink contributed to significant improved cell 
proliferation, greater myogenic gene expression as well 
as higher mature myotube formation characterized by 

the presence of striated band pattern and contraction in 
response to electrical stimulation.

Overall, these findings demonstrated that the use of 
bioinks with 3D cell printing technology could provide a 
sufficient myogenic microenvironment and the appropri‑
ate architecture of native muscle tissue.

6  Exploitation of engineered muscle tissues 
in the study of farm animal species 
and prospects of application

Ageing negatively affects muscle regeneration and mus‑
cle stem cell potential, resulting in muscle tissue pau‑
perization or sarcopenia [129, 130]. Several studies have 
shown that aged SCs present functional alterations, 
among which capacity to activate, proliferate and dif‑
ferentiate [131, 132]. In Pig, Polyethylene glycol (PEG)‑
based hydrogel scaffold was used to complement data 
on the impact of aging on tissue regeneration efficiency 
[133]. For that purpose, adult skeletal muscle‑derived 
pericytes, known to contribute to the regeneration pro‑
cess, were isolated from young (piglet) and adult (boar) 
pigs. Cell suspension was mixed with PEGylated fibrino‑
gen (PF) precursor solution, added into cylindrical silicon 
molds and placed under a long‑wave UV lamp to allow 
transition of PF into a gel [57]. PF has been described as 
having a remarkable influence on differentiation of myo‑
genic progenitors by providing a 3D microenvironment 
suitable for muscle fiber development [57, 58]. Culture 
medium was added immediately to the polymerized 
hydrogels to ensure cell growth. The plugs were cultured 
for 24 h in serum‑supplemented growth medium and 
then transferred into the serum‑depleted differentiation 
medium for 5 days in order to promote muscle fiber for‑
mation. For in vivo experiments, molds were immediately 
implanted subcutaneously in the backs of mice. In vitro, 
pericytes from boars had similar morphology and colony 
forming capacity to piglet ones, but an impaired ability 
to form myotubes and capillary‑like structures. Interest‑
ingly, the use of a PEG‑based hydrogel scaffold to support 
adult pericytes was also shown to significantly improve 
their myogenic differentiation and angiogenic potential 
in vitro and in vivo, positioning it as a suitable niche to 
promote skeletal muscle regeneration and blood vessel 
growth.

Several methods of producing cultured meat have been 
proposed and different cell types have been considered, 
including embryonic stem cells, induced pluripotent 
stem cells, mesenchymal stem cells and SCs [134]. In 3D 
cultured meat, the cells are grown on a scaffold, which 
is a component that directs its structure and order. The 
ideal scaffold is edible so the meat does not have to be 
removed, and periodically moves to stretch the develop‑
ing muscle, thereby simulating the animal body during 
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normal development. In addition, it must maintain flexi‑
bility to do not detach from the developing myotubes and 
favor vascularization to allow normal development of 
muscle tissue (Figure 2). Bovine muscle stem cells seem 
the most straightforward suitable candidates for this 
purpose. Potential attributes of microcarriers (MCs) to 
be used for meat production can be considered accord‑
ing to three different scenarios represented in Figure 3. In 
scenario 1, MCs are used as temporary substrates for the 
SC expansion and need to be removed at the end of the 
scale‑up process. There are two important prerequisites 
in this case, namely the need of MCs to provide a high 
detachment yield and an easy separation from the cells. 
Concerning the scenario 2, MCs also serve as a tempo‑
rary substrate for SC expansion but instead of being sep‑
arated at the end of the scale‑up process as done in the 
scenario 1 they can be degraded at a prior stage. In this 
case, the dissociation step can be replaced by a MC deg‑
radation step to obtain a single cell suspension. Finally, 
in the scenario 3, MCs are composed of edible materials 
and so can be embedded in the final product. As opposed 
to the previous scenario where MCs are considered as a 
food contact material, here they should comply with reg‑
ulations for use as a food ingredient or additive. Indeed, 
besides supporting cell growth, an edible MC would also 
be part of the final product and might affect the sensory 
attributes of the meat product, such as taste, color or tex‑
ture [135]. In order to more resemble the natural prod‑
uct, the Israeli company named MeaTech proposed to 
use a 3D printing techniques with the aim of improving 
the texture of cultured meat [136].

Overall, the use of 3D in vitro models of skeletal muscle 
tissue may be considered of highly interest in four areas 

Figure 2 Main steps required for production of cultured meat from an animal biopsy. Satellite cells are isolated from animal muscle biopsy 
and subsequently in vitro expanded. When a sufficient quantity of myogenic cells is obtained, differentiation of myoblasts is induced. Resulting 
myotubes start producing proteins to form functional myocytes which can be then assembled with known food processing methods (mixing, 
molding) to form cultured meat.
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Figure 3 Process requirements and variables for microcarriers 
based bioprocesses in three scenarios. During the preparation and 
expansion steps, microcarriers (MCs) serve as a temporary substrate 
for cell attachment and proliferation before being separated from 
the cells following the scale up through dissociation (scenario 1) and 
degradation (scenario 2) or being embedded in the final product if 
they are edible (scenario 3) (adapted from [135]).
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of application corresponding to i) the in‑depth character‑
ization of myogenic progenitors in a large wide of species 
including Pig, Poultry and Fish to investigate the notion 
of tissue‑resident cell diversity; ii) a better understanding 
of the deregulations affecting the myogenic progenitors 
in production species; iii) the study of the impact of vac‑
cination on growth and inflammatory component in live‑
stock animals; and iv) the provision of a study model for 
the meat maturation process.
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