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Abstract 

Infectious diseases in livestock are well-known to infect multiple hosts and persist through a combination of within- 
and between-host transmission pathways. Uncertainty remains about the epidemic dynamics of diseases being 
introduced on farms with more than one susceptible host species. Here, we describe multi-host contact networks 
and elucidate the potential of disease spread through farms with multiple hosts. Four years of between-farm animal 
movement among all farms of a Brazilian state were described through a static and monthly snapshot of network 
representations. We developed a stochastic multilevel model to simulate scenarios in which infection was seeded into 
single host and multi-host farms to quantify disease spread potential, and simulate network-based control actions 
used to evaluate the reduction of secondarily infected farms. We showed that the swine network was more con-
nected than cattle and small ruminants in both the static and monthly snapshots. The small ruminant network was 
highly fragmented, however, contributed to interconnecting farms, with other hosts acting as intermediaries through-
out the networks. When a single host was initially infected, secondary infections were observed across farms with all 
other species. Our stochastic multi-host model demonstrated that targeting the top 3.25% of the farms ranked by 
degree reduced the number of secondarily infected farms. The results of the simulation highlight the importance of 
considering multi-host dynamics and contact networks while designing surveillance and preparedness control strate-
gies against pathogens known to infect multiple species.
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Introduction
Infectious diseases in livestock populations have the 
potential to create large outbreaks and epidemics which 
compromise animal health and welfare, and produce 
economic losses [1]. Historically, these epidemics have 
been associated with disease transmission among multi-
ple livestock hosts, i.e., the 2001 foot-and-mouth disease 
(FMD) outbreak in the United Kingdom [1]. To better 
understand the main drivers of such large-scale out-
breaks, several studies have used social network analysis 

(SNA) and mathematical models to characterize animal 
movement patterns, often with a focus on individual 
food animal species such as cattle, [2–5] swine or small 
ruminants [6]. Only a few studies have developed math-
ematical models or even described contact networks over 
animal movement data of multiple species at the same 
time [7–16].

In previous literature, social network analysis has been 
used to shed light on between-farm disease spread pro-
cesses, including the calculation of expected epidemic 
size where a wide range of network features derived from 
both static and monthly snapshots of network repre-
sentation have been implemented [2, 17, 18]. The use of 
such approaches is very useful to describe the topology 
and temporal variation in the networks, however, it can 
lead to overestimation of the connectivity of the animal 
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trade. Therefore, approaches that account for the tempo-
ral order of movements such as temporal contact chains 
analysis and disease spread models have been successful 
in capturing epidemic trajectories [19–21].

The broader availability of animal movement data has 
been followed by significant advancements in disease 
spread modeling [22–24]. Those studies revealed impor-
tant dynamic characteristics of epidemics that could be 
used in the development of targeted surveillance systems 
for farms with a higher likelihood of infection through 
animal movements [10, 25]. Our study was conducted 
with data from one Brazilian state. Here, we implemented 
analysis that allows for the description of the possible 
risks of animal movements, and identify key farms in the 
contact network using a multispecies approach. Social 
network analysis and mathematical models considering 
more than one host can deliver insights into the quan-
tification of potential outbreak paths and provide useful 
data for the identification of key farms that can be used to 
break the direct contact transmission of animal diseases 
[8, 14, 26–29]. These insights are invaluable in support-
ing the design and implementation of efficient control 
and eradication strategies. From our detailed information 
about the entire movement data  and population data, 
we aimed to: (i) characterize single-host and multi-host 
(bovine, swine and, small ruminants) contact networks 
across 4 years of movement data; (ii) examine the poten-
tial of disease spread from one specific host to a different 
host considering animal movements as a  transmission 
route; and (iii) measure the impact of network-based tar-
get interventions to identify key nodes that could affect 
the number of infected premises in each host using a sto-
chastic multi-level susceptible-infected model.

Materials and methods
Daily between-farm movement data from January 2015 
to December 2018 of all registered farms with at least one 
of the following food animal hosts: cattle, buffalo, swine, 
sheep, or goat; were collected under a data use agree-
ment with the Rio Grande do Sul Secretary of Livestock 
and Irrigation (SEAPI‐RS, 2018) in Brazil. The spatial dis-
tribution of farms by host and municipalities by  km2 is 
presented in the Additional file 1. The data was extracted 
directly from the state’s database and included 1 621 374 
movement records. Incomplete or inaccurate data includ-
ing movements with missing farm identification, the 
same movement origin, and destination, or movements 
across state borders (n = 16 956) were not considered for 
the analysis. The final database included 1 604 418 move-
ments and 90  090  619 animals; 944 records were fairs 
and events in farms corresponding to 467 nodes, which 
represents 0.16% of the total number of premises. Move-
ments to slaughterhouses (34.56%, n = 554 487) were not 

included in the network description but were used in the 
disease spread model. For descriptive purposes cattle and 
buffalo hosts were grouped as “bovine”, and sheep and 
goat hosts were grouped as “small ruminants”.

Static and monthly snapshots of networks representations
The between-farm total of animals moved (referred 
herein as “batch”) was represented as a directed bipartite 
graph, g , where each farm was represented as a “node” 
and the movements between farms were represented 
as “edges”. Each edge has a specific node origin, i and a 
specific node destination, j . Each host network was ana-
lyzed individually and a full network (which includes 
all hosts) was reconstructed using data from all 4 years. 
Furthermore, in this static network description, node-
level metrics: degree and, betweenness, were described 
by calculating the global mean with their respective con-
fidence intervals of 95%, according to the network-host 
and period considered. The monthly snapshots of the 
static host networks of the full contact network were 
constructed to assess the temporal development of the 
network for the whole period of study using a monthly 
and yearly time resolution.

For both networks, we calculated network-level metrics 
including the number of nodes, edges, and animals; the 
diameter of the network; mean of degree; betweenness; 
PageRank; global cluster coefficient; and centralization 
based on degree. In addition, we also calculated the sizes 
of the connected components: Giant Strongly Connected 
Component (GSCC), and Giant Weakly Connected 
Component (GWCC) (Table 1). Based on the static net-
work, the in-degree and out-degree distributions were 
calculated for each species and for the full network.

Contact chains analysis
We used contact chain analysis to describe the tempo-
ral and sequential nodes accessible by the formation 
of edges over time. These chains were divided into two 
main types: the in-going contact chains (ICC), which 
identify the number of farms that could potentially trans-
mit the infection to the index farm over a defined period 
arising from the purchase and importation of animals; 
and the out-going contact chains (OCC), which can be 
used to quantify the number of farms that could poten-
tially acquire infection from the index farm through the 
onward sale and export of animals [19, 30].

Dynamic model description
The proposed model was designed to demonstrate the 
potential for the spread of infectious animals from one 
specific host to a different host, considering only trans-
mission through animal movements. We also measured 
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the impact of SNA centrality metrics in a theoretical node 
removal in the network, also referred to as percolation of 
nodes, to identify key nodes that should be targeted to 
implement control actions. These control actions prevent 
farms from receiving or shipping infected animals such as 
culling, isolation of animals, increased hygiene measures, 
or vaccination [20, 31–33]. So far, many past approaches 
are based on static networks where the temporal nature 
of animal movements and the vital dynamics (birth and 
deaths) of animals inside each farm is neglected. For that 
reason, we incorporated within farm and between  farm 
dynamics through a Susceptible-Infectious (SI) model 
using the temporal animal movement data explicitly with 
a higher effective contact rate to ensure an efficient dis-
ease transmission over the simulations. Here, each node 
removed from the network cannot transmit disease to 
other nodes, allowing the quantification of the effec-
tiveness of each strategy by the number of secondarily 
infected farms at the end of the simulations.

Within‑farm dynamics
We implemented a discrete dynamic stochastic model 
that accounts for: (i) the local dynamics that represent 
each animal population (bovine, swine, and small rumi-
nants); and (ii) the global dynamics that represent the 
interaction within farms and slaughterhouses; using a 
time resolution of 1 day. This transmission model frame-
work is implemented using the SimInf R package for data-
driven stochastic disease spread simulations [34] and the 
structure is described below.

Here, we tailored the within-farm dynamics to account 
for state transition from susceptible,S , to infected, I , 
compartments at a rate proportional to a frequency-
dependent transmission coefficient, β = 0.7 , in the simu-
lated population. This assumed a homogeneously mixing 
population, i, within each premises where all hosts had 
identical rates of infection. The model considers the 
between-farm movements among farms of all species, 
therefore considering a real multi-host contact network 

Table 1 Description of network analysis terminology and metrics 

Parameter Definition References

Nodes Premises or slaughterhouses [57]

Edge The link between two nodes

Degree This is a node-level metric where we count the number of unique contacts to and from 
a specific node. When the directionality of the animal movement is considered, the 
in-going and out-going contacts are defined: out-degree is the number of contacts 
originating from a specific premises, and in-degree is the number of contacts coming into 
a specific premises

Movements The number of animal movements

Diameter The longest geodesic distance between any pair of nodes using the shortest possible 
walk from one node to another considering the direction of the edges

[57]

PageRank A link analysis algorithm that produces a ranking based on the importance for all nodes in 
a network with a range of values between zero and one. The PageRank calculation consid-
ers the in-degree of a given premise and the in-degree of its neighbors. Here a Google 
PageRank measure was used

[58]

Betweenness This is a node-level network metric where the extent to which a node lies on paths con-
necting other pairs of nodes, defined by the number of geodesics (shortest paths) going 
through a node

[57]

Clustering coefficient Measures the degree to which nodes in a network tend to cluster together (i.e., if A → B 
and B → C, what is the probability that A → C), with a range of values between zero and 
one. Here, we implemented the global cluster coefficient where the number of closed 
triplets (or 3 × triangles) in the network was divided over the total number of triplets 
(both open and closed)

[57]

Giant weakly connected component (GWCC) The proportion of nodes that are connected in the largest component when directional-
ity of movement is ignored

[57]

Giant strongly connected component (GSCC) The proportion of the nodes that are connected in the largest component when direc-
tionality of movement is considered

[57]

Centralization  A general method for calculating a graph-level centrality score based on a node-level 
centrality measure. The formula for this is C(G) = sum(max(c(w), w) −  c(v),v),
where c(v) is the centrality of node v normalized by dividing by the maximum theoretical 
score for a graph. This essentially quantifies the extent to which the network is structured 
around a minority of nodes, and is quantified as the summed deviation between the 
maximum value recorded and the values recorded for all other nodes. Values range from 
0 to 1, with higher values indicating more extreme centralization, illustrating a relative 
reliance or concentration of off- and onto-farm shipments from/to a nodal farm at the 
macro-level of the entire network

[22, 57]
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of movement data from January  1st to December  31st, 
2018. Of note, we did not explicitly model the heteroge-
neities related to animal space and geolocation, behav-
ioral aspects, or animal categories such as age group for 
bovine or farm type in swine farms.

The initial simulation procedure was seeded in 1000 
farms for  each simulation. This was repeated so that 
each single-host farm or multi-host farm was the initial 
seeded farm for a total of 100 simulations. Transitions of 
animals between the susceptible and infected compart-
ments were modeled as a continuous-time discrete-state 
using Gillespie’s direct method continuous-time Markov 
chain [34], as follows,

 where t represents a specific time in a farm i.

Between‑farm dynamics
For the between-farm dynamics, susceptible farms, Si , 
can be infected by their contacts via daily animal move-
ments. Within these dynamics, animal movements to a 
slaughterhouse destination were considered to be sub-
tracting these animals from the system. The number of 
eligible animals moved between nodes and slaughter-
houses were selected according to the daily movement 
records for each host. Each draw of animals from S and 
I compartments were at random, while the total num-
ber of available animals were based on the official data 
provided by [50] for each premises. To assure the stabil-
ity of the farm populations, the animals born alive and 
declared to official veterinary service were used as an 
“enter event” and were assumed to be susceptible hosts. 
We subsequently calculated the number of ingoing and 
outgoing animals and the number of animals born and 
deceased for the full period of simulation, to update the 
animal population in each farm. For any site that has run 
out of animals, we reset the original number of animals 
reported to the state database [50]; this allows us to avoid 
sampling animals from non-existent populations. In Fig-
ure 1, we depict the interaction of the multiscale model 
considering both within-farm and between-farm dynam-
ics. At the end of each simulation, the daily number of 
secondarily infected farms of each host was calculated.

Simulating network‑based targeted percolation
Our analysis utilizes a theoretical percolation of farms 
(nodes) to remove nodes and their edges from the net-
work [20, 35, 36]. Thus, these nodes are removed from 
the contact network as are all their associated animal 
movements, leading to a fragmented network that allows 

(1)
dI

dt
=

βSiIi

Si + Ii
,

us to identify important farms whose removal reduces 
secondary infections.

We additionally considered the effect of sequen-
tial removal of farms from the network, based on their 
ranked order. Here, we used the static network con-
structed with movement data from 2015 to 2016, and 
the full network parameters of degree betweenness and 
PageRank (Table  1) to rank farms in descending order. 
We then quantify the effect of sequential removal on 
the reduction of secondarily infected farms in the host 
populations.

Furthermore, a sample of nodes was generated to be 
removed to simulate the non-targeted implementa-
tion of control actions from 2017 to 2018. The targeted 
farms were removed before model simulation was started 
to fragment the contact network, and the number of 
infected farms was then calculated at the end of each full 
simulation, on day 730 (December  31th 2018). For each 
simulation, the number of secondarily infected farms was 
grouped by host species and network metric, and uti-
lized in the identification of the key nodes to target with 
control actions. In this analysis, the “without control” 
scenario is represented as having zero nodes removed 
from the network since it represents the total number of 
infected farms observed when no control actions have 
been implemented. In the subsequent “with control” sce-
narios, all the simulations started with values taken from 
the end of the “without control” scenario, after which n 
nodes (ranging from 1 to 10 000) were removed and the 
impact over the number of secondary cases measured.

Initial conditions and farm selection
Since one of our objectives was to quantify the poten-
tial of a given infected host infecting another susceptible 
host(s) via animal transport, we developed scenarios A to 
C where the infection was seeded at bovine, small rumi-
nants, and swine single host farms, respectively. Trans-
portation of infected animals across multi-host farms 
was the only mode of disease propagation into other 
host species sites. In scenario D, infections were seeded 
in multi-host farms with at least two species (e.g. bovine 
and swine), and in scenario E, farms were randomly 
selected from the full network and seeded (Table 2). Each 
simulation started with 1000 infected farms drawn ran-
domly from the farm list as the initially-seeded infections 
according to the model scenario (Table  2) and repeated 
1000 times. In each initial infected farm, 10% of the ani-
mal population was assumed to be infected. Finally, the 
distribution of the number of secondarily infected farms 
at 5, 10, 15, and 30 days of the simulation was analyzed 
and presented according to the proposed list of scenarios 
(Table 2).
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For the network-based targeted percolation analy-
sis, we created three scenarios: (i) infection starting at 
bovine farms; (ii) infection starting at swine farms, and 

(iii) infection starting at small ruminant farms. For each 
scenario, we initiated each simulation infecting 1000 ran-
dom farms with a within-farm prevalence of 10% similar 

Figure 1 Schematic of state transitions for between within‑farm and between‑farm. A. Green lines indicate introduction events (births) in a 
specific farm, i, at a specific time, t , into a susceptible compartment, S. Within-farm dynamics represent farms types with individual hosts (bovine, 
swine, and small ruminants) modeled in the stochastic compartmental simulations that classify into Susceptible, S, to Infected, I, states according 
to the transmission coefficient β . The animals that are moved to the slaughterhouse are represented as deaths on the farm, i  , at time, t  , and are 
indicated by red lines. These animals were randomly chosen and removed from the simulation. B. The between farms dynamics layer represents the 
number of animals moved (batch), n, from the origin farm, i, to a destination farm, j, in a specific time, t , (indicated by the black dash arrows). The 
red arrows represent the unidirectional movements of animals from farms to slaughterhouses. Susceptible individuals were assumed to have never 
been infected given the absence of any foreign animal diseases within the study area for more than 10 years [55, 56].

Table 2 Model outputs for the spread of disease and network‑based surveillance model scenarios 

Model‑scenario Description Model output

A The infection was seeded at bovine farms Distribution of infected farms for each host species in the first 
30 daysB The infection was seeded at small ruminant farms

C The infection was seeded at swine farms

D The infection was seeded at multi-host farms

E The infection was seeded at random farms considering the full 
network (all hosts included)

Average farm prevalence of the stochastic simulations by month, 
discriminated by host and year

Network-based 
targeted interven-
tions

The model described above, where we seeded infection in 
each host: bovine, swine, small ruminant farms

The number of secondarily infected farms while removing the 
nodes
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to the procedure described above. In each proposed sce-
nario, we ran the model without removing any node for 
100 simulations and then quantified the mean and the 
confidence interval of the number of secondarily infected 
farms. We then selected one farm to be removed from 
the full network, according to a farm-ranked list based on 
a specific network metric, and again ran 100 simulations 
to calculate the mean and the confidence interval of the 
number of secondarily infected farms. We repeated this 
procedure by  increasing the number of removed farms 
by one until 10 000 farms were removed. Therefore, each 
scenario resulted in over a total of 1 million unique and 
individual simulations which are independent of other 
simulations.

Results
The total number of between-farm cattle and buffalo 
(bovine) movements were 1  251  615 (78.01%) batches 
and 20  773  516 (24.3%) animals, swine were 273  223 
(17.02%) batches and 62  292  763 (72.8%) animals, and 
small ruminants represented 96  398 (6%) batches and 
2 731 304 (2.89%) animals.

Bovine farms had the highest number of farms in the 
network followed by small ruminants and swine. For 
multi-host farms, the largest proportion was bovine 
and small ruminants with 10%, swine and bovine with 
3.13%, all three host species with 0.37%, and swine and 

small ruminants with 0.04% (Figure 2A). Overall for the 
between-farm movements, bovine-to-bovine (41.5%) 
movements were the highest, however, 27.6% of small 
ruminant movements were between farms with bovine, 
followed by swine-bovine movements with 12.83%, 
swine-swine movements with 8.42%, small ruminant-to-
small ruminant movements 7.95% and small ruminant-
to-swine movements with 1.7% (Figure 2B and Additional 
file 2).

Static network description
As expected, bovine networks had the largest number 
of edges (Table  3). Mean betweenness was dominated 
by bovine and swine farms, while the clustering coeffi-
cient remained similar among all host species and cen-
tralization was significantly higher among swine farms 
(Table  3). When we compared the size of GWCC and 
GSCC, bovine farms had the largest connected compo-
nents followed by small ruminants and swine. Similar 
patterns were found in the yearly temporal window pre-
sented in Additional file 3.

Distribution of in‑ and out‑degree per host
In Figure  3, in- and out-degree distributions are pre-
sented individually for each host network. In general, for 
the full network, in-degree was higher than out-degree 
for bovine and small ruminants, while the swine network 

Figure 2 Farm population and movements among hosts. A. Venn diagram of the number of farms and the proportion of farms among 
the three host groups. B. Circular plot for intra- and inter-host movement flows. Each external sector of the circle represents the origin of the 
movements where the numbers represent the total of the in-going and out-going movements for each host according to the number of 
interactions. The out-going animal flow starts from the base of each sector.
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results indicate that after a degree value of 34 the fre-
quency of out-degree was higher than in-degree.

Monthly snapshots of networks representations
The monthly network representations are shown in Fig-
ure  4. The movements between swine farms have the 
highest mean degree, while bovine dominate in nodes, 
edges, and diameter throughout the four years. As 
expected the swine monthly-snapshot network exhib-
ited a higher number of animals per batch than the other 
species. The calculated mean betweenness showed three 
unusual peaks for the bovine monthly-snapshot network; 
these are related to 49 nodes all associated with fairs, 
events, and exportation ports of bovine exportation, each 
one with betweenness values greater than 100  000 dur-
ing the peak months, presented in Additional file 4. Small 
ruminant networks were steady throughout the four 
years. When evaluating the cluster coefficients, bovine 
and swine movements remain steady while small rumi-
nants have large fluctuations. The swine network central-
ization was much higher than bovine or small ruminants, 
which could be related to how the industry is organized 
with the formation of groups of producers with commer-
cial contracts with an integrator [21, 37]. For the GSCC 
and GWCC, the bovine monthly-snapshot network fol-
lowed the same temporal patterns with the nodes indi-
cating an important dependency in the number of active 
farms, while small ruminants showed a seasonality with 
a higher percentage of GSCC and GWCC at the end of 
each year. Finally, the swine monthly-snapshot network 
exhibited the highest values of GSCC and GWCC, indi-
cating it was the most connected network.

Contact chains
The out-going contact chain (OCC) of the full network 
and the bovine network had similar distributions ranging 

from 10 to 10 000 farms. The OCC distribution for small 
ruminants showed a lower interquartile range when com-
pared with the other distributions, while the swine OCC 
showed the largest interquartile range with higher densi-
ties in values above 100 farms (Figure 5). 

The in-going contact chain (ICC) of bovine, swine, and 
small ruminant distributions follows a similar pattern 
of OCC counterparts, however, with lower distribution 
sizes. Bovine and small ruminants follow the same pat-
tern, with values clustered between  100 to  102 (Figure 6). 
However, the contact chains for swine present very dif-
ferently for both ICC and OCC compared to other hosts, 
with a wider interquartile range indicating larger chains 
to a wider range of farms. The highest density in the 
swine OCC was centered within 100 and 900 values, indi-
cating a larger number of connected farms within that 
range (Figures 5 and 6).

In addition, we explore the monthly ICC and OCC 
distribution by the host. The result showed similar 
distributions between the full network and the bovine 
network. However, the swine contact chains presented 
higher distributions than the other species, while small 
ruminants showed the lowest values but with a tempo-
ral trend with higher values distributions in December 
and January. All results are presented in Additional files 
5 and 6.

Assessment of secondary cases by host
Simulations were divided by their initial seed infection con-
ditions according to the model scenarios A, B, C, and D. The 
estimated secondary cases, represented by the number of 
farms for the first 5, 10, 15, and 30 days of the disease propa-
gation, are shown in Figure 7. For all simulated scenarios, sec-
ondary infections were observed across all host species. As 
expected, the highest number of infected farms corresponds 
to the species where the infection began due to most of the 
connections being intra-host. However, the connections 

Table 3 Static network for cattle, swine, small ruminants, and for the full network 

Host Nodes Edges Mean 
degree 
(CI95%)

Diameter Animals GSCC (%) GWCC 
(%)

Mean betweenness 
(CI 95%)

Clustering 
coefficient

Network 
centralization

Swine 13 141 75 205 11.4 
(10.99–
11.90)

20 62 292 763 1885 
(14.34%)

9788 
(74.34%)

629 319 (477 
380–781 257)

0.032 0.219

Cattle 261 892 840 824 6.4 (6.36–
6.48)

33 20 773 516 105 609 
(40.33%)

249 742 
(95.36%)

712 451 (670 851.1–
754 051)

0.025 0.003

Small 
rumi-
nants

32 325 51 848 3.2 (3.12–
3.27)

26 1 763 834 5301 
(16.40%)

25 420 
(78.64%)

33 394 (29 706–
36 821)

0.028 0.004

Full 
network

277 004 1 038 346 7.12 
(7.05–
7.18)

30 90 090 619 121 975 
(44.03%)

264 908 
(95.63%)

772 436 (706 188- 
785 513)

0.03 0.003
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between different hosts across multi-host farms made dis-
ease propagation to other hosts possible. It is important to 
note that large variabilities were observed in the distributions 
of swine farms followed by small ruminants and bovine, 
respectively. Furthermore, when simulations of the infection 
started in swine or small ruminants farms, there were no 
secondary infections between 5 to 30 days, which could be 
due to saturation of the current animal movement connec-
tions. A longer duration of time would be needed for farms 
to create movement connections with new farms.

The results are also presented as prevalence in Addi-
tional file 7, to allow for a comparison of the prevalence 
between each host. The prevalence is proportional to 
the number of farms per host, as the prevalence corre-
sponds to the number of infected host farms divided by 
the number of farms that had at least one host species. 
Under these model considerations, swine farms were the 
most infected species when simulations started in multi-
host farms. Moreover, the prevalence of small ruminants 
was higher than bovine for the majority of simulations 
with the exception of simulations that started at bovine 
farms. For bovine farms, when the simulation began in 
any other species, results showed the lowest prevalence 
of all hosts (Additional file 7). Additionally, in Additional 
file  8, we show the descriptive statistics for the farm 

prevalence in the 5, 10, 15, 30 days of spread disease 
simulation and total mean prevalence for each month by 
host and year starting at all random hosts in Additional 
file 9.

Effectiveness of network‑based targeted percolation
Based on the simulation and subsequent theoretical removal 
of farms in the full network, the most effective network cen-
trality metric throughout all hosts was the degree, followed 
by betweenness and PageRank, respectively. In Figure 8, the 
area of each color represents the number of infected farms 
on the last simulation day (December  31th, 2018) after per-
forming the control action, which involved selecting n 
number of farms to be removed according to their ranked 
network metrics. The nodes were removed from the total 
population, and subsequently, the prevalence in each host 
was quantified. For example, in the swine panel, Figure  8, 
it is evident that random node removal from the total farm 
population is not efficient to break the full network and in 
consequence, could not reduce the swine farms prevalence 
since the removed nodes are not related to the pig farms’ 
connections. Whilst, the removal of 1000 farms ranked by 
degree was sufficient to reduce prevalence values close to 
zero in swine farms, for small ruminants and bovine it was 
not possible to reach close to zero infected farms, even with 

Figure 3 Distribution of in‑degree and out‑degree data by host and for the entire network 2015–2018. Each point represents binned data 
for frequencies and degree values.
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10 000 farms removed from the networks. For bovine farms, 
the removal of 10 000 farms induced a reduction in preva-
lence from 5% to 1% (Figure 8 on the right y-axis). The list of 
the top 10 000 farms ranked by degree includes 5316 bovine 
farms, 4080 multi-host farms, 418 swine farms, and 43 small 
ruminant farms.

Discussion
In this study, we described between-farm contact net-
works of individual host species and a full network con-
sidering movements among bovine, small ruminants, 
and swine farms in one Brazilian state. Using the full 
network we developed a compartmental network model 

Figure 4 Descriptive statistics of time series of static networks by the host from 2015 to 2018. Mean degree is the average degree calculated 
by measuring the mean degree of all farms in the selected population, nodes is the number of active farms, edges are the sum of the between-farm 
movements (batches), animals is the sum of the transported host, diameter is a number of steps in the monthly network, mean betweenness is 
the mean of the node-shortest paths, cluster coefficient and centralization are the proportions and, GWCC and GSCC are the percentage of farms in 
each component.



Page 10 of 16Cardenas et al. Veterinary Research           (2022) 53:14 

Figure 5 Boxplots and violin plots of the distribution of the yearly out‑going contact chains by host and for the full network. 

Figure 6 Boxplots and violin plots of the distribution of the yearly in‑going contact chains by host and for the full network. 
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to assess the potential for disease spread through the 
contact networks while considering the implications of 
network-based control actions. Based on our descrip-
tive analysis, we found higher connectivity in the static 
bovine network, while in the monthly snapshot network 
representations and the contact chains analysis we found 
higher connectivity in the swine network. In contrast, 
small ruminant farms were found to be widely discon-
nected in all network views, monthly snapshot static 
networks representations, and contact chains analysis 
approaches. In the Susceptible-Infected stochastic multi-
host model, where we seeded infection individually to 
each host species, results demonstrated that transmission 
to other host-species was not dependent on the initially 
seeded species. In addition, we simulated node-removal 
from the full network, by ranking farms based on their 
network measure (i.e. degree) and subsequently remov-
ing the first 10 000 farms, showing that ranking by degree 
would reduce the simulated prevalence by from 5 to 1% 
(Figure  8). Thus, we argue that it is sensible for disease 
control and surveillance programs that target pathogens 
capable of infecting multiple hosts, to consider both the 
usual movement restrictions during disease emergencies, 
but also surveillance activities such as serosurveillance 
at all susceptible species. This is particularly relevant 
for foreign animal disease preparedness activities such 
as against FMD.

In the static network view, bovine networks accounted 
for 80.97% of the total movements and constituted 
94.54% of farms in the database, generating the largest 
giant connected component sizes (GSCC and GWCC) 
and network diameter (Table  2). Within the full net-
work, bovine farms acted as hubs that influenced the 
network dynamics by creating the presence of possible 
super spreader nodes such as event farms with a high 
out-degree, which has been described in other stud-
ies performed in Brazil [3–5]. In the current study, fairs 
and events movements represented only 0.16% of the 
total volume of all transported animals, which differed 
greatly from movement patterns in other countries such 
as in the UK where 30.4% of movements were related 
to movements to markets [38]. In the monthly snapshot 
network representations view, the swine network was 
more connected than all other host species, with higher 
values of animal movements, mean of degree, centraliza-
tion, and giant connected component percentages. This 
is likely because of the pyramidal structure commercial 
pig production utilizes to improve performance and pro-
ductivity. Because of such continuous flow, nurseries and 
wean to finishers tend to receive and send a great num-
ber of pigs, thus have a higher degree in comparison with 
other production types [21, 37, 39]. In contrast, the net-
work connectivity in bovine farms was low despite hav-
ing more than 20 000 edges and high node activity in a 

Figure 7 Number of secondarily infected farms over 30 days post‑seed infection. Each title plot represents the host in which the infection 
was seeded. The result is represented in boxplots where the y-axis is in log10 scale and represents the number of infected farms prevalence 
generated through 100 simulations of each host for the first 5, 10, 15, and 30 days post-introduction.
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monthly view. This result was noticeable by the distribu-
tion of the degree parameter, in which all hosts exhibited 
power-law distributions, suggesting that these networks 
are characterized as scale-free [19, 40]. Additionally, the 
degree distribution results could help highlight super-
spreader farms in all host populations through the iden-
tification of farms with several commercial partners that 

make a major contribution to disease spread [41]. For 
example,  the swine network was highlighted as  the net-
work with the largest degree, which has been described 
previously in the same region [2, 21]. Finally, the analysis 
of the small ruminant networks showed a very discon-
nected network with a marked seasonality at the end of 
each year but with fewer monthly edges and nodes than 

Figure 8 Characterization of disease dynamics in terms of secondarily infected farms for each host species. The simulations assumed a 
farm prevalence of 10% and simulation at day zero started with 1000 infected farms. Each color shaded area represents the node removal results for 
each network metric and the solid line represents the means of these results. The y-left axis represents the number of infected farms and the y-right 
axis represents the percentage of infected farms in the total population. The x-axis represents the number of farms removed from the network. The 
red dashed line represents the mean of infected farms when no nodes were removed from the network (without a control scenario).
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swine and cattle farms, despite having more registered 
farms than the swine production in the full network.

Our modeling results showed that regardless of which 
species was first infected at the beginning of the simu-
lations, secondary infections were detected in all farm 
types. This indeed is likely associated with the network 
structure and how food animal populations and produc-
tion are organized in the study region. However, to the 
author’s knowledge, this is the first in-depth characteriza-
tion of a multi-host animal networks in Brazil. We argue 
that uncovering the interconnection among multiple 
species is of great relevance because most disease con-
trol programs are centered in only a single species, often 
neglecting the potential of disease introduction from a 
different host species (e.g. FMD, influenza).

When infection started in multi-host farms the distri-
bution of the final number of infected farms at the end 
of the simulation, bovine farms had a higher median 
than the other species, while the swine farms showed 
broader distributions compared to small ruminants and 
bovines. This may be explained mainly by how commer-
cial pig production is organized, often extremely verti-
cally integrated with a high volume of pigs moving from 
farm-to-farm based on age/production phases. Finally, 
in all scenarios with simulations seeded in a single host 
(i.e. swine) the estimated number of infected farms at 
30 days post-seeded infection was higher than the simu-
lations which seeded infection in the multi-host farms. 
This is because the connectivity of single host farm net-
works allows for the spread of disease quickly, infecting 
more farms of the specific host species in the 30-day time 
frame than when the disease is started in a multi-host 
farm. Similar patterns have been observed in past epi-
demics, such as the FMD [14, 15, 26, 42, 43] where multi-
host farms had a role in infection propagation.

We used our proposed model to also simulate network-
based interventions, thus we used node-removal strat-
egies to test control actions. Targeting and removing 
farms sequentially based on network metrics, was most 
impactful when the degree was used. This reduced the 
expected number of infected farms from ~5% to ~1% in 
the bovine network (degree), 0.6% to ~0.01 in the swine 
network (degree), and ~1 to ~0.025% in the small rumi-
nant network (degree). In contrast, random node removal 
was the least efficient in reducing secondary infections. 
An unexpected result was that for small ruminants, ran-
dom removal of nodes had a better impact in reducing 
transmission than using PageRank network metric, partly 
because this network is more disconnected compared to 
the other host-networks which leads to PageRank fail-
ing to recognize important farms for the spread of dis-
ease. Previous studies that also utilized large datasets 
and similar node-removal approaches but in  single host 

networks, reported similar results as ours, especially for 
bovine networks [33, 35, 44, 45] and swine networks [21, 
37, 41]. Studies that considered more than one host spe-
cies and network-based target control actions reported a 
larger reduction in the expected number of cases directly 
generated by one case in a population, size of the con-
nected components, and the number of infected farms 
using degree-based interventions [10, 14]. An important 
limitation of the studies listed above is the use of static 
networks which could have overestimated the connec-
tivity of those networks [14, 20, 45]. Therefore, we argue 
for the need to consider temporal models, such as our 
contact chain analysis, when developing network-based 
target approaches, because it considers the temporal 
order of the connections and avoids over-connectivity 
of the  static networks [20, 45]. Furthermore, network 
analysis approaches have been widely used recently; the 
great majority centered on describing the contact net-
works of a single species, here we cite just some relevant 
examples [2, 18, 32, 39, 40, 46–48], however, only a frac-
tion of studies have explicitly considered the interaction 
of possible contacts among more than one species while 
constructing their transmission networks [7–9, 11–13, 
15, 16, 49]. While single host networks are informative, 
they are likely to underestimate the epidemic propaga-
tion of pathogens capable of infecting multiple species 
[26, 50–53]. Our results reinforce the relevance of includ-
ing data, when available, of all susceptible host species 
while developing regional disease preparedness activities 
into disease surveillance systems and agree with previous 
literature which reported better performance of temporal 
network measures in identifying farms that could be tar-
geted to reduce the secondary number of infections [39].

Limitations and further remarks
Our main goal in this study was to quantify the role of 
multi-host farms in disease transmission via contact 
networks and identify hubs in the networks. Therefore, 
while we are aware that fomites such as delivery trucks 
and local-area spread are important for disease propa-
gation [50, 54], we have not included such transmission 
pathways in our model nor have we included the hetero-
geneity present in disease transmission for any specific 
disease. However, in future work, we will specifically 
set transmission coefficients for each host species (e.g. 
swine, cattle) interaction, and incorporate spatial trans-
mission within a full network model to model, for exam-
ple, the spread of FMD. Additionally, we did not consider 
animal level dynamics (i.e. age, commercial versus back-
yard swine farms) so the risk each animal posed for dis-
ease transmission was assumed to be the same, which 
could contribute to an overestimation of the transmission 
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potential. Similarly, this is not an individual-based model 
so we cannot individualize the results for a specific indi-
vidual or calculate the time that an animal spends on 
each farm. Furthermore, we are unable to quantify the 
effect of other between-farm movements such as vet-
erinarians and employees, which may contribute to the 
transmission through indirect contacts.

Using a stochastic network model, our results demon-
strate that outbreaks starting in a particular host species 
resulted in outbreaks on farms with all other host spe-
cies. Small ruminant farms, despite the lower number of 
nodes in the network, share a large number of contacts 
among other host-nodes in the full network. In addi-
tion, our multi-host network-based intervention model 
showed that identifying and deploying surveillance to the 
10 000 farms with the largest degree, regardless of host-
species, would reduce more than 70% of the simulated 
transmission. Ultimately, this study helps to understand 
the temporal variation in between-farm movement fluc-
tuations and the topology of each contact network, as 
well as the similarities and differences among the three 
species’ movement dynamics.

Abbreviations
FMD: foot and mouth disease; OVS: official veterinary service; SNA: Social 
Network analysis; GSCC: giant strongly connected components; GWCC : giant 
weakly connected components; ICC: in-going contact chains; OCC: out-going 
contact chains.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13567- 022- 01031-2.

Additional file 1. Spatial distribution of farms by host and munici‑
palities by km2 in the State of Rio Grande do Sul, Brazil.  

Additional file 2. Number of records and animals moved among 
hosts.  

Additional file 3. Static network description yearly description.  

Additional file 4. Monthly distribution of betweenness.  

 Additional file 5. Monthly out‑going contact chain distribution by 
host and species.  

Additional file 6. Monthly in‑going contact chain distribution by host 
and species.  

Additional file 7. Number of prevalence over 30 days post‑seed 
infection. Each title plot represents the host in which the infection was 
seeded. The result is represented in boxplots where the y-axis is in log10 
scale and represents the number of infected farms prevalence generated 
through 100 simulations of each host for the first 5, 10, 15, and 30 days 
post-introduction. 

Additional file 8. Descriptive statistics for the farm prevalence in the 
5, 10, 15, 30, days of spread disease simulation.  

Additional file 9. Mean of all simulation farms prevalence for each 
month by host and year starting at all random hosts. 

Acknowledgements
The authors would like to acknowledge funding support from Fundo de 
Desenvolvimento e Defesa sanitária animal (FUNDESA-RS).

Authors’ contributions
NCC and GM conceived the study. NCC and GM participated in the design of 
the study. FPNL coordinated the movement data collection. NCC conducted 
data processing, cleaning, designed the model, and simulated scenarios with 
the assistance of GM. NCC and GM designed the computational analysis. 
NCC conducted the formal coding. NCC, ALS, and GM wrote and edited the 
manuscript. GM secured the funding. All authors read and approved the final 
manuscript.

Funding
Fundo de desenvolvimento e defesa sanitária animal (FUNDESA-RS) Award 
number 2021–1318. This funding body did not play a role in the design, analy-
sis, and reporting of the study.

Availability of data and materials
The data that support the findings of this study are not publicly available and 
are protected by confidential agreements, therefore, are not available. Spread 
disease simulation and node removal code are available in the repository: 
https:// github. com/ macha do- lab/ Multi ple- speci es- animal- movem ents- netwo 
rk- prope rties- disea se- dynam ic- and- the- impact- of- targe ted.

Declarations

Ethics approval and consent to participate
The authors confirm the ethical policies of the journal, as noted on the jour-
nal’s author guidelines page. Since this work did not involve animal sampling 
nor questionnaire data collection by the researchers, there was no need for 
ethics permits.

Consent for publication
All authors discussed the results and critically reviewed the manuscript to 
approve for publication.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Population Health and Pathobiology, College of Veterinary 
Medicine, North Carolina State University, Raleigh, North Carolina, USA. 
2 Departamento de Defesa Agropecuária, Secretaria da Agricultura, Pecuária e 
Desenvolvimento Rural (SEAPDR), Porto Alegre, Brazil. 

Received: 21 July 2021   Accepted: 26 January 2022

References
 1. Davies G (2002) The foot and mouth disease (FMD) epidemic in the 

United Kingdom 2001. Comp Immunol Microbiol Infect Dis 25:331–343. 
https:// doi. org/ 10. 1016/ S0147- 9571(02) 00030-9

 2. Cardenas NC, Pozo P, Lopes FPN, Grisi-Filho JHH, Alvarez J (2021) Use of 
network analysis and spread models to target control actions for bovine 
tuberculosis in a state from Brazil. Microorganisms 9:227. https:// doi. org/ 
10. 3390/ micro organ isms9 020227

 3. de Menezes TC, Luna I, de Miranda SHG (2020) Network analysis of cattle 
movement in Mato Grosso Do Sul (Brazil) and Implications for foot-and-
mouth disease. Front Vet Sci 7:219. https:// doi. org/ 10. 3389/ fvets. 2020. 
00219

 4. Negreiros RL, Grisi-Filho JHH, Dias RA, Ferreira F, Ferreira Neto JS, Ossada R, 
Amaku M (2020) Analysis of the cattle trade network in the state of Mato 
Grosso, Brazil. Braz J Vet Res Anim Sci 57:e171635. https:// doi. org/ 10. 
11606/ issn. 1678- 4456. bjvras. 2020. 171635

https://doi.org/10.1186/s13567-022-01031-2
https://doi.org/10.1186/s13567-022-01031-2
https://github.com/machado-lab/Multiple-species-animal-movements-network-properties-disease-dynamic-and-the-impact-of-targeted
https://github.com/machado-lab/Multiple-species-animal-movements-network-properties-disease-dynamic-and-the-impact-of-targeted
https://doi.org/10.1016/S0147-9571(02)00030-9
https://doi.org/10.3390/microorganisms9020227
https://doi.org/10.3390/microorganisms9020227
https://doi.org/10.3389/fvets.2020.00219
https://doi.org/10.3389/fvets.2020.00219
https://doi.org/10.11606/issn.1678-4456.bjvras.2020.171635
https://doi.org/10.11606/issn.1678-4456.bjvras.2020.171635


Page 15 of 16Cardenas et al. Veterinary Research           (2022) 53:14  

 5. Silva Júnior JL, Almeida EC, Corrêa FN, Lima PRB, Ossada R, Marques FS, 
Dias RA, Ferreira F, Ferreira Neto JS, Grisi-Filho JHH, Amaku M, Manso Filho 
HC, Silva JCR (2017) Livestock markets play an important role in the cattle 
movement network in Pernambuco, Brazil. Braz J Vet Res Anim Sci 54:225. 
https:// doi. org/ 10. 11606/ issn. 1678- 4456. bjvras. 2017. 124303

 6. Kocho T, Abebe G, Tegegne A, Gebremedhin B (2011) Marketing value-
chain of smallholder sheep and goats in crop-livestock mixed farming 
system of Alaba, Southern Ethiopia. Small Rumin Res 96:101–105. https:// 
doi. org/ 10. 1016/j. small rumres. 2011. 01. 008

 7. Amprako L, Karg H, Roessler R, Provost J, Akoto-Danso EK, Sidibe S, 
Buerkert A (2020) Vehicular livestock mobility in West Africa: seasonal traf-
fic flows of cattle, sheep, and goats across Bamako. Sustainability 13:171. 
https:// doi. org/ 10. 3390/ su130 10171

 8. Cabezas AH, Sanderson MW, Lockhart CY, Riley KA, Hanthorn CJ (2021) 
Spatial and network analysis of U.S. livestock movements based on 
Interstate Certificates of Veterinary Inspection. Prev Vet Med 193:105391. 
https:// doi. org/ 10. 1016/j. preve tmed. 2021. 105391

 9. Kao RR, Green DM, Johnson J, Kiss IZ (2007) Disease dynamics over 
very different time-scales: foot-and-mouth disease and scrapie on the 
network of livestock movements in the UK. J R Soc Interface 4:907–916. 
https:// doi. org/ 10. 1098/ rsif. 2007. 1129

 10. Marquetoux N, Stevenson MA, Wilson P, Ridler A, Heuer C (2016) Using 
social network analysis to inform disease control interventions. Prev Vet 
Med 126:94–104. https:// doi. org/ 10. 1016/j. preve tmed. 2016. 01. 022

 11. Martínez-López B, Ivorra B, Fernández-Carrión E, Perez AM, Medel-Herrero 
A, Sánchez-Vizcaíno F, Gortázar C, Ramos AM, Sánchez-Vizcaíno JM (2014) 
A multi-analysis approach for space–time and economic evaluation of 
risks related with livestock diseases: the example of FMD in Peru. Prev Vet 
Med 114:47–63. https:// doi. org/ 10. 1016/j. preve tmed. 2014. 01. 013

 12. Omondi GP, Obanda V, VanderWaal K, Deen J, Travis DA (2021) Animal 
movement in a pastoralist population in the Maasai Mara Ecosystem in 
Kenya and implications for pathogen spread and control. Prev Vet Med 
188:105259. https:// doi. org/ 10. 1016/j. preve tmed. 2021. 105259

 13. Poolkhet C, Kasemsuwan S, Phiphakhavong S, Phouangsouvanh I, 
Vongxay K, Shin MS, Kalpravidh W, Hinrichs J (2019) Social network analy-
sis for the assessment of pig, cattle and buffalo movement in Xayabouli, 
Lao PDR. PeerJ 6:e6177. https:// doi. org/ 10. 7717/ peerj. 6177

 14. Ruget A-S, Rossi G, Pepler PT, Beaunée G, Banks CJ, Enright J, Kao 
RR (2021) Multi-species temporal network of livestock movements 
for disease spread. Appl Netw Sci 6:15. https:// doi. org/ 10. 1007/ 
s41109- 021- 00354-x

 15. Tildesley MJ, Keeling MJ (2008) Modelling foot-and-mouth disease: a 
comparison between the UK and Denmark. Prev Vet Med 85:107–124. 
https:// doi. org/ 10. 1016/j. preve tmed. 2008. 01. 008

 16. Valerio VC, Walther OJ, Eilittä M, Cissé B, Muneepeerakul R, Kiker GA (2020) 
Network analysis of regional livestock trade in West Africa. PLoS One 
15:e0232681. https:// doi. org/ 10. 1371/ journ al. pone. 02326 81

 17. Kao RR, Danon L, Green DM, Kiss IZ (2006) Demographic structure and 
pathogen dynamics on the network of livestock movements in Great 
Britain. Proc R Soc B Biol Sci 273:1999–2007. https:// doi. org/ 10. 1098/ rspb. 
2006. 3505

 18. VanderWaal KL, Picasso C, EvaA E, Craft ME, Alvarez J, Fernandez F, Gisl A, 
Perez A, Wells S (2016) Network analysis of cattle movements in Uruguay: 
quantifying heterogeneity for risk-based disease surveillance and control. 
Prev Vet Med 123:12–22. https:// doi. org/ 10. 1016/j. preve tmed. 2015. 12. 003

 19. Fielding HR, McKinley TJ, Silk MJ, Delahay RJ, McDonald RA (2019) Contact 
chains of cattle farms in Great Britain. R Soc Open Sci 6:180719. https:// 
doi. org/ 10. 1098/ rsos. 180719

 20. Lentz HHK, Koher A, Hövel P, Gethmann J, Sauter-Louis C, Selhorst T 
(2016) Disease spread through animal movements: a static and temporal 
network analysis of pig trade in Germany. PLoS One 11:e0155196. https:// 
doi. org/ 10. 1371/ journ al. pone. 01551 96

 21. Machado G, Galvis JA, Lopes FPN, Voges J, Medeiros AAR, Cárdenas NC 
(2021) Quantifying the dynamics of pig movements improves targeted 
disease surveillance and control plans. Transbound Emerg Dis 68:1663–
1675 https:// doi. org/ 10. 1111/ tbed. 13841

 22. Chaters GL, Johnson PCD, Cleaveland S, Crispell J, de Glanville WA, 
Doherty T, Matthews L, Mohr S, Nyasebwa OM, Rossi G, Salvador LCM, 
Swai E, Kao RR (2019) Analysing livestock network data for infectious 
disease control: an argument for routine data collection in emerging 

economies. Philos Trans R Soc B Biol Sci 374:20180264. https:// doi. org/ 10. 
1098/ rstb. 2018. 0264

 23. Ezanno P, Andraud M, Beaunée G, Hoch T, Krebs S, Rault A, Touzeau S, 
Vergu E, Widgren S (2020) How mechanistic modelling supports deci-
sion making for the control of enzootic infectious diseases. Epidemics 
32:100398. https:// doi. org/ 10. 1016/j. epidem. 2020. 100398

 24. Galvis JA, Jones CM, Prada JM, Corzo CA, Machado G (2021) The 
between-farm transmission dynamics of porcine epidemic diarrhoea 
virus: a short-term forecast modelling comparison and the effectiveness 
of control strategies. Transbound Emerg Dis. https:// doi. org/ 10. 1111/ 
tbed. 13997 (in press)

 25. Rossi G, De Leo GA, Pongolini S, Natalini S, Zarenghi L, Ricchi M, Bolzoni 
L (2017) The potential role of direct and indirect contacts on infection 
spread in dairy farm networks. PLoS Comput Biol 13:e1005301. https:// 
doi. org/ 10. 1371/ journ al. pcbi. 10053 01

 26. Björnham O, Sigg R, Burman J (2020) Multilevel model for airborne trans-
mission of foot-and-mouth disease applied to Swedish livestock. PLoS 
One 15:e0232489. https:// doi. org/ 10. 1371/ journ al. pone. 02324 89

 27. Bradhurst RA, Roche SE, East IJ, Kwan P, Garner MG (2015) A hybrid 
modeling approach to simulating foot-and-mouth disease outbreaks in 
Australian livestock. Front Environ Sci 3:17. https:// doi. org/ 10. 3389/ fenvs. 
2015. 00017

 28. Mason-D’Croz D, Bogard JR, Herrero M, Robinson S, Sulser TB, Wiebe K, 
Willenbockel D, Godfray HCJ (2020) Modelling the global economic 
consequences of a major African swine fever outbreak in China. Nat Food 
1:221–228. https:// doi. org/ 10. 1038/ s43016- 020- 0057-2

 29. Wilber MQ, Pepin KM, Campa H, Hygnstrom SE, Lavelle MJ, Xifara T, Ver-
Cauteren KC, Webb CT (2019) Modelling multi-species and multi-mode 
contact networks: implications for persistence of bovine tuberculosis at 
the wildlife–livestock interface. J Appl Ecol 56:1471–1481. https:// doi. org/ 
10. 1111/ 1365- 2664. 13370

 30. Nöremark M, Widgren S (2014) EpiContactTrace: an R-package for contact 
tracing during livestock disease outbreaks and for risk-based surveillance. 
BMC Vet Res 10:71. https:// doi. org/ 10. 1186/ 1746- 6148- 10- 71

 31. Büttner K, Krieter J, Traulsen A, Traulsen I (2013) Efficient interruption of 
infection chains by targeted removal of central holdings in an animal 
trade network. PLoS One 8:e74292. https:// doi. org/ 10. 1371/ journ al. pone. 
00742 92

 32. Kiss IZ, Green DM, Kao RR (2006) The network of sheep movements 
within Great Britain: network properties and their implications for infec-
tious disease spread. J R Soc Interface 3:669–677. https:// doi. org/ 10. 1098/ 
rsif. 2006. 0129

 33. Nicolas G, Apolloni A, Coste C, Wint GRW, Lancelot R, Gilbert M (2018) 
Predictive gravity models of livestock mobility in Mauritania: the effects 
of supply, demand and cultural factors. PLoS One 13:e0199547. https:// 
doi. org/ 10. 1371/ journ al. pone. 01995 47

 34. Widgren S, Bauer P, Eriksson R, Engblom S (2019) Siminf: an R package for 
data-driven stochastic disease spread simulations. J Stat Softw 91:1–42. 
https:// doi. org/ 10. 18637/ jss. v091. i12

 35. Knific T, Ocepek M, Kirbiš A, Lentz HHK (2020) Implications of cattle trade 
for the spread and control of infectious diseases in Slovenia. Front Vet Sci 
6:454. https:// doi. org/ 10. 3389/ fvets. 2019. 00454

 36. Motta P, Porphyre T, Handel I, Hamman SM, Ngu Ngwa V, Tanya V, Morgan 
K, de ChristleyBronsvoort RBM (2017) Implications of the cattle trade 
network in Cameroon for regional disease prevention and control. Sci 
Rep 7:43932. https:// doi. org/ 10. 1038/ srep4 3932

 37. Cardenas NC, VanderWaal K, Veloso FP, Galvis JOA, Amaku M, Grisi-Filho 
JHH (2021) Spatio-temporal network analysis of pig trade to inform 
the design of risk-based disease surveillance. Prev Vet Med 189:105314. 
https:// doi. org/ 10. 1016/j. preve tmed. 2021. 105314

 38. Robinson SE, Christley RM (2007) Exploring the role of auction markets 
in cattle movements within Great Britain. Prev Vet Med 81:21–37. https:// 
doi. org/ 10. 1016/j. preve tmed. 2007. 04. 011

 39. Passafaro TL, Fernandes AFA, Valente BD, Williams NH, Rosa GJM (2020) 
Network analysis of swine movements in a multi-site pig production 
system in Iowa, USA. Prev Vet Med 174:104856. https:// doi. org/ 10. 1016/j. 
preve tmed. 2019. 104856

 40. Salines M, Andraud M, Rose N (2017) Pig movements in France: designing 
network models fitting the transmission route of pathogens. PLoS One 
12:e0185858. https:// doi. org/ 10. 1371/ journ al. pone. 01858 58

https://doi.org/10.11606/issn.1678-4456.bjvras.2017.124303
https://doi.org/10.1016/j.smallrumres.2011.01.008
https://doi.org/10.1016/j.smallrumres.2011.01.008
https://doi.org/10.3390/su13010171
https://doi.org/10.1016/j.prevetmed.2021.105391
https://doi.org/10.1098/rsif.2007.1129
https://doi.org/10.1016/j.prevetmed.2016.01.022
https://doi.org/10.1016/j.prevetmed.2014.01.013
https://doi.org/10.1016/j.prevetmed.2021.105259
https://doi.org/10.7717/peerj.6177
https://doi.org/10.1007/s41109-021-00354-x
https://doi.org/10.1007/s41109-021-00354-x
https://doi.org/10.1016/j.prevetmed.2008.01.008
https://doi.org/10.1371/journal.pone.0232681
https://doi.org/10.1098/rspb.2006.3505
https://doi.org/10.1098/rspb.2006.3505
https://doi.org/10.1016/j.prevetmed.2015.12.003
https://doi.org/10.1098/rsos.180719
https://doi.org/10.1098/rsos.180719
https://doi.org/10.1371/journal.pone.0155196
https://doi.org/10.1371/journal.pone.0155196
https://doi.org/10.1111/tbed.13841
https://doi.org/10.1098/rstb.2018.0264
https://doi.org/10.1098/rstb.2018.0264
https://doi.org/10.1016/j.epidem.2020.100398
https://doi.org/10.1111/tbed.13997
https://doi.org/10.1111/tbed.13997
https://doi.org/10.1371/journal.pcbi.1005301
https://doi.org/10.1371/journal.pcbi.1005301
https://doi.org/10.1371/journal.pone.0232489
https://doi.org/10.3389/fenvs.2015.00017
https://doi.org/10.3389/fenvs.2015.00017
https://doi.org/10.1038/s43016-020-0057-2
https://doi.org/10.1111/1365-2664.13370
https://doi.org/10.1111/1365-2664.13370
https://doi.org/10.1186/1746-6148-10-71
https://doi.org/10.1371/journal.pone.0074292
https://doi.org/10.1371/journal.pone.0074292
https://doi.org/10.1098/rsif.2006.0129
https://doi.org/10.1098/rsif.2006.0129
https://doi.org/10.1371/journal.pone.0199547
https://doi.org/10.1371/journal.pone.0199547
https://doi.org/10.18637/jss.v091.i12
https://doi.org/10.3389/fvets.2019.00454
https://doi.org/10.1038/srep43932
https://doi.org/10.1016/j.prevetmed.2021.105314
https://doi.org/10.1016/j.prevetmed.2007.04.011
https://doi.org/10.1016/j.prevetmed.2007.04.011
https://doi.org/10.1016/j.prevetmed.2019.104856
https://doi.org/10.1016/j.prevetmed.2019.104856
https://doi.org/10.1371/journal.pone.0185858


Page 16 of 16Cardenas et al. Veterinary Research           (2022) 53:14 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 41. Alarcón LV, Cipriotti PA, Monterubbianessi M, Perfumo C, Mateu E, Allepuz 
A (2020) Network analysis of pig movements in Argentina: identification 
of key farms in the spread of infectious diseases and their biosecurity 
levels. Transbound Emerg Dis 67:1152–1163. https:// doi. org/ 10. 1111/ 
tbed. 13441

 42. Firestone SM, Hayama Y, Lau MSY, Yamamoto T, Nishi T, Bradhurst RA, 
Demirhan H, Stevenson MA, Tsutsui T (2020) Transmission network recon-
struction for foot-and-mouth disease outbreaks incorporating farm-level 
covariates. PLoS One 15:e0235660. https:// doi. org/ 10. 1371/ journ al. pone. 
02356 60

 43. Green DM, Kiss IZ, Kao RR (2006) Modelling the initial spread of foot-and-
mouth disease through animal movements. Proc Biol Sci 273:2729–2735. 
https:// doi. org/ 10. 1098/ rspb. 2006. 3648

 44. Brown E, Marshall AH, Mitchell HJ, Byrne AW (2019) Cattle movements in 
Northern Ireland form a robust network: implications for disease man-
agement. Prev Vet Med 170:104740. https:// doi. org/ 10. 1016/j. preve tmed. 
2019. 104740

 45. Büttner K, Salau J, Krieter J (2016) Quality assessment of static aggrega-
tion compared to the temporal approach based on a pig trade network 
in Northern Germany. Prev Vet Med 129:1–8. https:// doi. org/ 10. 1016/j. 
preve tmed. 2016. 05. 005

 46. Büttner K, Krieter J (2021) Epidemic spreading in a weighted pig trade 
network. Prev Vet Med 188:105280. https:// doi. org/ 10. 1016/j. preve tmed. 
2021. 105280

 47. Duncan AJ, Reeves A, Gunn GJ, Humphry RW (2022) Quantify-
ing changes in the British cattle movement network. Prev Vet Med 
198:105524. https:// doi. org/ 10. 1016/j. preve tmed. 2021. 105524

 48. Ezanno P, Arnoux S, Joly A, Vermesse R (2022) Rewiring cattle trade move-
ments helps to control bovine paratuberculosis at a regional scale. Prev 
Vet Med 198:105529. https:// doi. org/ 10. 1016/j. preve tmed. 2021. 105529

 49. Nöremark M, Håkansson N, Lewerin SS, Lindberg A, Jonsson A (2011) Net-
work analysis of cattle and pig movements in Sweden: measures relevant 
for disease control and risk based surveillance. Prev Vet Med 99:78–90. 
https:// doi. org/ 10. 1016/j. preve tmed. 2010. 12. 009

 50. Boender GJ, van Roermund HJW, de Jong MCM, Hagenaars TJ (2010) 
Transmission risks and control of foot-and-mouth disease in The Neth-
erlands: spatial patterns. Epidemics 2:36–47. https:// doi. org/ 10. 1016/j. 
epidem. 2010. 03. 001

 51. Chis Ster I, Dodd PJ, Ferguson NM (2012) Within-farm transmission 
dynamics of foot and mouth disease as revealed by the 2001 epidemic 
in Great Britain. Epidemics 4:158–169. https:// doi. org/ 10. 1016/j. epidem. 
2012. 07. 002

 52. Halasa T, Ward MP, Boklund A (2020) The impact of changing farm struc-
ture on foot-and-mouth disease spread and control: a simulation study. 
Transbound Emerg Dis 67:1633–1644. https:// doi. org/ 10. 1111/ tbed. 
13500

 53. Payen A, Tabourier L, Latapy M (2019) Spreading dynamics in a cattle 
trade network: size, speed, typical profile and consequences on epidemic 
control strategies. PLoS One 14:e0217972. https:// doi. org/ 10. 1371/ journ 
al. pone. 02179 72

 54. Yang Q, Gruenbacher DM, Heier Stamm JL, Amrine DE, Brase GL, DeLoach 
SA, Scoglio CM (2020) Impact of truck contamination and information 
sharing on foot-and-mouth disease spreading in beef cattle production 
systems. PLoS One 15:e0240819. https:// doi. org/ 10. 1371/ journ al. pone. 
02408 19

 55. Plowright W (1984) The duration of immunity in cattle following inocula-
tion of rinderpest cell culture vaccine. J Hyg 92:285–296

 56. Terpstra C, Van Maanen C, Van Bekkum JG (1990) Endurance of immunity 
against foot-and-mouth disease in cattle after three consecutive annual 
vaccinations. Res Vet Sci 49:236–242

 57. Wasserman S, Faust K (1994) Social network analysis: methods and appli-
cations. Cambridge University Press, Cambridge

 58. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web 
search engine. Comput Netw ISDN Syst 30:107–117. https:// doi. org/ 10. 
1016/ S0169- 7552(98) 00110-X

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1111/tbed.13441
https://doi.org/10.1111/tbed.13441
https://doi.org/10.1371/journal.pone.0235660
https://doi.org/10.1371/journal.pone.0235660
https://doi.org/10.1098/rspb.2006.3648
https://doi.org/10.1016/j.prevetmed.2019.104740
https://doi.org/10.1016/j.prevetmed.2019.104740
https://doi.org/10.1016/j.prevetmed.2016.05.005
https://doi.org/10.1016/j.prevetmed.2016.05.005
https://doi.org/10.1016/j.prevetmed.2021.105280
https://doi.org/10.1016/j.prevetmed.2021.105280
https://doi.org/10.1016/j.prevetmed.2021.105524
https://doi.org/10.1016/j.prevetmed.2021.105529
https://doi.org/10.1016/j.prevetmed.2010.12.009
https://doi.org/10.1016/j.epidem.2010.03.001
https://doi.org/10.1016/j.epidem.2010.03.001
https://doi.org/10.1016/j.epidem.2012.07.002
https://doi.org/10.1016/j.epidem.2012.07.002
https://doi.org/10.1111/tbed.13500
https://doi.org/10.1111/tbed.13500
https://doi.org/10.1371/journal.pone.0217972
https://doi.org/10.1371/journal.pone.0217972
https://doi.org/10.1371/journal.pone.0240819
https://doi.org/10.1371/journal.pone.0240819
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X

	Multiple species animal movements: network properties, disease dynamics and the impact of targeted control actions
	Abstract 
	Introduction
	Materials and methods
	Static and monthly snapshots of networks representations
	Contact chains analysis
	Dynamic model description
	Within-farm dynamics
	Between-farm dynamics
	Simulating network-based targeted percolation
	Initial conditions and farm selection

	Results
	Static network description
	Distribution of in- and out-degree per host
	Monthly snapshots of networks representations
	Contact chains
	Assessment of secondary cases by host
	Effectiveness of network-based targeted percolation

	Discussion
	Limitations and further remarks

	Acknowledgements
	References




