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Abstract 

Porcine circovirus type 4 (PCV4) is a newly emerging virus, with both PCV4 genomic DNA and specific antibodies 
detected in swine herds in several provinces in China and South Korea. Although the virus was first identified in 2019 
in Hunan, China, retrospective research suggests that serum samples collected as early as 2008 were positive for PCV4 
antibody. Infections with only PCV4 or co‑infections with other pathogens have been associated with several clinical 
manifestations, but its pathogenesis remains to be determined. The purpose of this review was the following: (1) to 
characterize PCV4 epidemiology by assessing evolutionary dynamics and genetic diversity of PCV4 strains circulating 
in swine herds; (2) to reconstruct a computerized 3D model to analyze PCV4 Cap properties; (3) and to summarize 
the current evidence of PCV4‑associated clinical‑pathological manifestations. The origin of PCV4 is apparently distinct 
from other PCV, based on analysis of phylogenetic trees. Of note, PCV4 shares an ancient common ancestor with 
mink circoviruses. Furthermore, the amino acid residue at position 27 of the PCV4 Cap is a key benchmark to distin‑
guish PCV4a (27S) from PCV4b (27 N), based on PCV4 strains currently available, and variation of this residue may alter 
Cap antigenicity. In addition, the capsid surface of PCV4 has characteristics of increased polar residues, compared to 
PCV2, which raises the possibility that PCV4 may target negatively charged host receptors to promote virus infection. 
Further studies are required, including virus isolation and culture, and more detailed characterization of molecular 
epidemiology and genetic diversity of PCV4 in swine herds.
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1 Introduction
Porcine circoviruses (PCV) are members of the Circo-
virus genus in the Circoviridae family, characterized as 
non-enveloped viruses composed of a circular, single-
stranded genomic DNA within an icosahedral cap-
sid, ~17  nm in diameter [1–3]. To date, there are four 
identified types: PCV1, PCV2, PCV3, and a novel PCV4.

PCV4, a newly emerging circovirus, was first identi-
fied in 2019 in Hunan, China, in pigs with several clini-
cal disease syndromes, including respiratory and enteric 
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signs as well as porcine dermatitis nephropathy syn-
drome (PDNS) [3]. However, in retrospective studies, 
PCV4 genomic DNA was detected in swine tissue sam-
ples collected in 2012 from Henan, China [4], with some 
serum samples collected as early as 2008 from Chinese 
swine positive for PCV4 antibody [5]. Therefore, there is 
evidence that PCV4 has been present and circulating in 
swine herds for more than a decade.

The genome of PCV4 contains 1770 bases and a pal-
indrome stem-loop structure, with the conserved nona-
nucleotide (CAG TAT TAC) located within the intergenic 
region between two major open reading frames (ORF) 
(Figure  1). PCV4 has high nucleotide identity (66.9%) 
to mink circovirus, but low identities (43.2–51.5%) to 
other PCV [3]. ORF1 encodes the replicase protein 
(Rep) and the length of PCV4 ORF1 sequences differs 
from PCV1 and PCV2. In that regard, whereas ORF2 
encodes the capsid protein (Cap), the length of PCV4 
ORF2 sequences differs among PCV1, PCV2 and PCV3. 
Alignment of Cap sequences revealed that PCV4 has low 
identities with PCV1, PCV2 and PCV3 (~43.1, 45 and 
24.5%, respectively) [3]. Cap is the sole structural protein 
of PCV, with a vital role in clathrin-mediated endocyto-
sis, and actin- and small GTPase-dependent pathways for 
virus cell entry into host cells, as determined in a study 
with PCV2 [6, 7]. Additionally, it is noteworthy that Cap 
mutations cause antigenic drifts and potentially enable 

PCV2 and PCV3 to evade immunity [8, 9]. Evolution-
ary  pressures driving  mutations may enable the virus 
to generate resistance to antiviral treatment, evade host 
immune responses, and facilitate its adaptation to the 
environment and hosts. Thus, elucidating the evolution-
ary dynamics of Cap is key to understanding this emerg-
ing PCV4.

The purpose of this review was the following: (1) to 
characterize PCV4 epidemiology by assessing evolu-
tionary dynamics and genetic diversity of PCV4 strains 
circulating in swine herds; (2) to reconstruct a comput-
erized 3D model to analyze PCV4 Cap properties; and 
(3) to summarize clinical diseases associated with PCV4 
infection.

2  Evolution and genetic diversity of PCV4
2.1  Evolutionary changes
Although PCV4 was discovered in 2019 in the Hunan 
province of China, retrospective studies demonstrated 
that PCV4 DNA was present in swine samples collected 
in 2012 [4], implying PCV4 has been circulating in pigs 
for at least a decade. Since 2019, PCV4 has been reported 
in several provinces of China, including Hunan, Henan, 
Jiangsu, Anhui, Shanxi, Guangxi, and Inner Mongo-
lia [3, 4, 10–14]. Furthermore, PCV4 was also detected 
in domestic swine in Korea [15, 16]. Notwithstanding, 
based on failure to detect PCV4 DNA in swine samples 

Figure 1 Genomic characterization of PCV4. The PCV4 genome, a single‑stranded circular DNA genome with 1770 nt, contains two major ORF 
that differ from those in PCV1, PCV2 and PCV3. However, the stem‑loop of PCV4 has a conserved 9‑nt nonanucleotide sequence (CAG TAT TAC) 
located within the intergenic region between ORF1 and ORF2.
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(sera and tissues) from Europe (Italy and Spain) [17], it 
seems PCV4 appears to have a limited geographic distri-
bution. Thus, distribution of PCV4 in other geographic 
regions requires further study.

For a better understanding of the evolutionary origin 
of PCV4, we analyzed a dataset that included sequences 
from 35 PCV4 and other circoviruses from a variety of 
host species. RDP4 recombination analysis software 
was used to detect gene recombination, but there was 
no evidence of recombination. Sequences were aligned 
with the Clustal W method conducted in MEGA 7. To 
trace the origin of PCV, a phylogenetic tree was recon-
structed, based on Rep amino acid sequences, using the 
neighbor joining (NJ) and maximum likelihood (ML) 

methods. Based on phylogenetic trees, we inferred that 
PCV1 and PCV2 are closely related to bat-clade 2 circo-
viruses, whereas PCV3 is closely related to bat-clade 1 
circoviruses, indicating a potential bat circovirus origin 
(Figure  2). However, PCV4 has a distinct origin from 
other PCV (Figure  2). All PCV4 strains were closely 
related to mink circoviruses (NJ tree bootstrap = 1.0, 
ML tree bootstrap = 0.99). The NJ and ML trees had 
similar topology, emphasizing that PCV4 shares a com-
mon ancient ancestor with mink circoviruses, provid-
ing evidence that it is reasonable to trace the origin of 
PCV based on the conserved Rep protein.

Figure 2 Phylogenetic trees of circoviruses, using conserved Rep amino acid sequences. The analysis contained 93 amino acid sequences. 
Neighbor joining (A) and maximum likelihood (B) trees were reconstructed using the p‑distance and Jones‑Taylor‑Thornton (JTT) model, 
respectively, with 1000 bootstrap replicates and bootstrap >50%.
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2.2  Genetic analysis
Based on complete genomes, rep or cap genes of all the 
35 PCV4 sequences deposited in GenBank, phylogenetic 
trees were constructed, and PCV4 was divided into 2 
temporary genotypes: PCV4a and PCV4b [18]. PCV4a 
contained 29 sequences collected from 2012 to 2021, 
whereas PCV4b only included 6 PCV4 sequences from 
2017 to 2020. To better understand differences between 
the two genotypes, sequence alignments revealed that 
residues at positions 4, 155 and 228 in ORF1 and residues 

at positions 15, 27 and 138 in ORF2 were mutation hot-
spots (Figure 3).

It is noteworthy that two-point mutations (R15W and 
S27N) occur in the putative nuclear localization signal 
(NLS) region of the PCV4 Cap, an arginine-rich region 
within the circovirus genus, which may be implicated 
in the package of the viral genome [15, 19]. Recently, it 
was reported that residue 1–20 of NLS is responsible 
for nucleolar localization of PCV4 Cap. Furthermore, 
the Cap is capable of directly interacting with nucleolar 

Figure 3 Phylogenetic trees of PCV4, based on the complete genome. A neighbor joining tree was reconstructed using p‑distance model 
with 1000 bootstrap replicates and bootstrap >50%. Amino acid sequences of putative ORF1 and ORF2 were aligned with the ESPript 3.0 online 
tool, and the hot‑spots of mutations are represented by the columns with their corresponding positions.
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phosphoprotein nucleophosmin-1 (NPM1) [20]. The 
positively charged NLS remains buried in the internal 
surface of the PCV2 capsid, which may externalize in the 
metastable capsid during viral “breathing” [19]. Never-
theless, our previous study revealed that the peptide con-
taining residues 1–17 of PCV2 NLS (defined NLS-A) was 
rapidly internalized via direct translocation by increased 
membrane permeability during cellular uptake [21]. 
Additionally, the positively charged residue (R) of PCV2 
NLS-A changed to an uncharged residue (A), which 
significantly decreased membrane permeability and 
inhibited viral entry into cells (unpublished data). Thus, 
it was predicted that the mutation of R15W may affect 
PCV4 NLS functionality [18], although effects on mem-
brane permeability remain to be determined. At position 
27, a polar residue (27S) was changed to a similar polar 
one (N). Of note, the residue at position 27 was a criti-
cal site to distinguish PCV4a (27S) from PCV4b (27  N), 
based on all PCV4 sequences deposited in GenBank (Fig-
ure 3). Furthermore, epitope prediction suggests that the 
NLS contained a potential linear B cell epitope (5–35 aa). 
Furthermore, a previous study revealed that an epitope 
(26–36 aa) within the NLS of the PCV2 Cap, is a criti-
cal B cell epitope capable of eliciting neutralization anti-
body against PCV2 infection [22]. Therefore, mutations 
occurring at the two sites (15 and 27) of the NLS may 
alter antigenicity of the PCV4 Cap. However, potential 
immunogenic changes due to variations of the Cap NLS 
between PCV4a and PCV4b remain to be determined.

3  Analysis of PCV4 Cap properties
The Cap is the sole structural protein, capable of elicit-
ing robust immune responses and regarded as the major 
target antigen for PCV4 serological diagnosis and vaccine 
design [23]. Since the three-dimensional (3D) structure 
of PCV4 Cap has not been resolved, we modeled the 3D 
structure of the PCV4 Cap via homology modeling based 
on PCV2 Cap structure (PDB ID: 3R0R) in the SWISS-
MODEL, as described [23]. There was a typical jelly-roll 
structure in the PCV4 Cap, although surface-exposed 
loops were distinctly different between PCV2 and PCV4, 
similar to the PCV2 Cap [23]. As a non-enveloped virus, 
the Cap has a vital role in entry of the virus into cells. 
PCV2 enters host cells via attachment of the PCV2 ico-
sahedral capsid to the moiety of heparan sulfate (HS) 
or chondroitin sulfate B (CSB) on the cell surface [24]. 
Residues responsible for binding to HS or CSB have been 
resolved by Reza Khayat’s group and, interestingly, are 
discontinuously distributed on the capsid surface [25]. 
Based on our analysis of electrostatic properties, PCV4 
has 14 polar residues on the capsid surface, including 
seven positively charged residues (R and K) and eight 
polar amino acid residues (N and Q) (Figure  4A), with 

more polar residues than PCV2 (Figure  4B). In general, 
residues on the outer surface of the Cap are locations 
where the Cap interacts with the environment (e.g., cell 
receptors). Therefore, a better environment is created for 
receptor binding by hydrogen bonds, increasing its polar-
ity by increasing polar residues on PCV4 capsid surface. 
Although the receptor and cell entry mechanism of PCV4 
are unknown, we reported that PCV4 virus-like particles 
(VLP) can efficiently enter porcine cell lines (PK15 and 
3D4/21) [23]. Thus, we hypothesized that PCV4 may 
have evolved with increasing polar residues via nonspe-
cific interactions of the virus with negatively charged HS, 
CSB or perhaps other cell membrane receptors during 
PCV4 infection.

4  Epidemiology of PCV4 and clinical diseases 
associated with this virus

Since the first discovery of PCV4 in the Hunan province 
of China, there have been several serological surveys and 
molecular epidemiology reports. PCV4 was detected in 
pigs of various age groups and in several tissues, as co-
infections with other pathogens, and with a variety of 
clinical signs, as summarized in Table 1. To date, PCV4 
genomic DNA has been detected in pigs in several prov-
inces in China, as well as in South Korea, with posi-
tive rates ranging from 1.6 to 45.39% [4, 10]. PCV4 can 
infect almost all ages of pigs, including sucking, wean-
ling, and fattening pigs, as well as sows and fetuses [4, 10, 
11, 15]. Additionally, PCV4 genome has been detected 
in sera and other tissues, including heart, liver, spleen, 
lung, kidney, lymph node, tonsil, intestine, and brain. 
Thus, we inferred that PCV4 has a wide tissue tropism, 
facilitating both horizontal and vertical transmission. 
Interestingly, PCV4 remains geographically confined to 
Asia (China and Korea), but it has not been detected in 
Europe. Several animals (mice, dogs and cattle) may serve 
as reservoirs for PCV, with potential for cross-species 
transmission of PCV to swine [26]. However, currently, 
it is not clear whether intermediate hosts are involved in 
transmission of PCV4 to swine herds. Therefore, further 
monitoring and a better understanding of the molecular 
epidemiology of PCV4 in potential intermediate hosts 
should provide new insights into the limited PCV4 geo-
graphic distribution and assist in controlling PCV4 
transmission.

In a serological survey of 1790 serum samples col-
lected from pigs in 17 provinces of China between 2008 
and 2020, overall seroprevalence of PCV4 was 43.97% 
[5]. PCV4 Rep-specific antibodies were detected in sera 
from pigs of various ages, with the highest prevalence 
(67.8%) in sows, and the earliest evidence from a sam-
ple collected in 2008 [5]. In another serological survey of 
1048 pig serum samples collected from Jiangsu province 
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of China between 2018 and 2021, 3.44% of samples had 
PCV4 Cap-specific antibodies [27]. Although these 
serological studies provided insights into the preva-
lence of PCV4 in pigs, dynamics of viremia and antibody 
responses to PCV4 infections in swine herds require fur-
ther investigation.

Pathogenesis of PCV4 is not yet well established. So 
far, PCV4-associated clinical manifestations have been 
described in various age groups of pigs, including PDNS 
and respiratory symptoms [3, 4, 12], postweaning mul-
tisystemic wasting syndrome (PMWS), neurological 
symptoms and diarrhea [4, 11], enteritis and encephali-
tis [4], and skin disease [13]. In addition, PCV4 may also 
cause reproductive dysfunction via vertical transmission, 
boosting its prevalence in aborted fetuses and sows, and 
implying an association with reproductive failure [4, 15]. 
Of note, co-infections of PCV4 with other PCV are com-
mon in swine herds. PCV2 causes PMWS and PDNS [1], 

and PCV3 may be associated with PDNS and reproduc-
tive failure [2, 28]. Co-infections of PCV4 with PCV2, 
PCV3, or both, have been described in pigs with clini-
cal signs of PMWS, PDNS and reproductive failure [4, 
11, 12]. Moreover, the correlation between PCV4 virus 
titers and clinical manifestations in pigs may be helpful 
to elucidate PCV4 pathogenesis. Two groups demon-
strated that PCV4 produces a moderate viral load [15, 
18]. Furthermore, the positive rate and viral DNA loads 
of PCV2 and PCV4 are higher in spleen and lymph nodes 
than other tissues [18], indicating PCV2 targets lymphoid 
tissues and causes lymphocyte depletion, consistent with 
previous studies [1]. Based on the similar immune tis-
sue tropism between PCV4 and PCV2, PCV4 may act 
as a co-factor, or independently cause subclinical infec-
tions in pigs with moderate viral loads. In addition, there 
are reports of co-infection of PCV4 with pseudorabies 
virus (PRV), porcine epidemic diarrhea virus (PEDV) 

Figure 4 3D structures of PCV2 and PCV4 Cap and capsid. The 3D structure of PCV4 Cap was generated via homology modeling, using the 
PCV2 Cap as a template (PDB ID: 3R0R). 3D structures of Cap and capsid were displayed with Pymol version 1.8.0.3. Electrostatic surface analysis of 
Cap monomer (far left) was computed in Chimera. The positively charged and polar amino acid residues of the Cap monomer (center) and capsid 
(far right) were indicated by light blue and red, respectively.
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and porcine reproductive and respiratory syndrome virus 
(PRRSV) in pigs with neurological symptoms, encephali-
tis, diarrhea, and enteritis [4, 11]. Based on current evi-
dence, PCV4 is often detected in co-infections with other 
viral pathogens that make it difficult to elucidate the role 
of PCV4 in disease pathogenesis. Thus, isolating this 
virus or rescuing PCV4 using infectious clones will pro-
vide new insight. Very recently, PCV4 was successfully 
rescued from an infectious clone of infected piglets, lead-
ing to visible pathological changes in several organs in 
PCV4-inoculated piglets [29]. In addition, PCV4 viremia, 
PCV4-specific antibody and up-regulated cytokines 
were detected in PCV4-inoculated piglets. These results 
implied that PCV4 is pathogenic in piglets, which may 
pose a great threat to the swine industry.

PCV4 can be detected with several diagnostic meth-
ods, including polymerase chain reaction (PCR), real-
time PCR, and indirect enzyme-linked immunosorbent 
assay (ELISA). Nevertheless, immunochemistry or in situ 
hybridization should be used to detect virus-specific 
antigen or viral RNA expression in various tissues and 
its associated histopathology. Applying these diagnostic 

techniques to PCV4 would promote the understanding 
of the pathogenesis and molecular epidemiology of this 
emerging porcine circovirus.

5  Future perspectives
As four distinct PCV are circulating in swine herds 
worldwide, exploring serologic cross-reactivity of PCV4 
with other PCV is important to establish reliable sero-
logical diagnostic methods. Two studies demonstrated 
that the established PCV4 ELISA, based on Rep or Cap, 
had no serological cross-reactions with positive sera of 
other PCV [5, 27]. Moreover, our previous study also 
demonstrated an absence of cross-reactions between 
PCV4 and either PCV2 or PCV3 [23]. VLP, morphologi-
cally and immunogenically similar to their native viruses, 
are widely used for novel vaccine design and serological 
diagnosis. VLP, assembled by a number of subunits (e.g., 
PCV2 VLP are assembled from 60 Cap subunits), contain 
multivalent epitopes (i.e., conformational epitopes), with 
higher avidity to antibodies compared to the subunit pro-
tein. Therefore, VLP are advantageous as an antigen for 
serological diagnostic tests. PCV4 VLP, prepared in E. 

Table 1 Detection of PCV4 in clinical samples.

/ no information

Region Host Sample Year Clinal signs Positive rate Co-infections Reference

Hunan Pigs Serum, lung, spleen 
and kidney

2019 Respiratory disease, 
diarrhea, PDNS

12.8% (24/187) / [3]

Henan Sow, sucking, wean‑
ing, grower, aborted 
fetuses

Heart, liver, spleen, 
lung, kidney, brain, 
intestine, lymph 
node, serum

2012–2020 Neurological 
symptom, PDNS, 
diarrhea, enteritis, 
PMWS, respiratory 
symptom, abortion, 
encephalitis

45.39% (69/152) Both PCV2, 3, PRV, 
PEDV, and PRRSV

[4]

Inner Mongolia Healthy sows, 
nursery and fatten‑
ing pigs

Serum 2016–2018 / 1.6% (27/1683) PCV2 or PCV3 [10]

Henan and Shanxi Suckling, weanling 
pigs, fetuses

Brain, heart, liver, 
spleen, kidney, lung, 
lymph nodes, small 
intestines

2018–2019 Respiratory symp‑
tom, diarrhea, neu‑
rological symptom, 
PMWS

25.4% (16/63) Both PCV2, 3 and 
PRV; Both PCV2 and 
PRV

[11]

Guangxi Pigs Serum 2015–2019 Respiratory disease, 
PDNS

5.1% (13/257) PCV2 or PCV3; Both 
PCV2 and PCV3

[12]

Anhui Pig Lung, spleen, kid‑
ney, duodenum

2019 Skin diseases 10.71% (18/168) PCV2 or PCV3; Both 
PCV2 and PCV3

[13]

Jiangsu Pig Lymph node, tonsil, 
lung, kidney and 
liver

2018–2019 Dead pigs 3.33% (4/120) Both PCV1, 2, 3 [14]

South Korea Sow, aborted 
fetuses, suckling, 
weaned, growers

Lung, spleen, heart, 
kidneys

2019–2020 Healthy suckling 
pigs, dead pigs, 
aborted fetuses

3.28% (11/335) / [15]

Korea Pigs Tissues, serum, oral 
fluids

2020–2021 Diseases pigs 39.3% (57/145) / [16]

Henan Pigs Liver, spleen, kidney, 
lung, lymph nodes, 
intestine, serum

2020–2021 / 33.33% (45/133) PCV2 [18]
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coli, were highly immunogenic in vivo, and can be used 
as candidate vaccine and research tools for PCV4, as we 
reported [23]. Thus, PCV4 VLP have much potential for 
the development of serological diagnostics for PCV4. In 
addition, Misinzo et  al. used PCV2 VLP to investigate 
the effects of HS or CSB on binding of PCV2 VLP to host 
cells [24]. Due to the lack of an efficient cell cultivation 
method for PCV4, the use of PCV4 VLP has great poten-
tial to further characterize this virus. That PCV4 VLP 
can be produced with high purity and yields make them a 
preferred tool instead of virus to study cellular receptors 
during early stages of virus attachment.

As co-infections of PCV4 with other PCV are common 
in swine herds, there is rationale for developing multi-
valent PCV combinations to protect against these co-
infections of PCV. Based on sequence alignment, PCV4 
had low identities (<50%) with three other PCV Reps 
and Caps. Nevertheless, PCV4 had identities of ~43–48% 
with PCV1 or PCV2 Reps and Caps, and it is important 
to analyze the conserved epitopes among the 4 distinct 
PCV for vaccine design or antiviral strategies against 
PCV co-infections; However, whether these PCV share 
conserved epitopes requires further investigation.

6  Conclusion
PCV4 is a potential pathogen associated with several 
clinical signs or syndromes, including PDNS, respiratory 
or enteric diseases and reproductive failures. This virus 
has been detected in almost all porcine tissues, particu-
larly in spleen and lymph nodes. Moreover, co-infection 
of PCV4 with other PCV or pathogens is common in 
pigs. Therefore, we should focus on monitoring the prev-
alence and co-infection of PCV4 with other pathogens, 
as well as continue to closely monitor dynamic changes 
in genetic diversity and molecular epidemiology of domi-
nant PCV4 strains. Meanwhile, as the exact pathogen-
esis of PCV4 remains to be elucidated, virus isolation of 
PCV4 in clinical samples or PCV4 rescued using infec-
tious clones should provide more insight to better eluci-
date PCV4 pathogenesis and associated diseases.
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