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Abstract 

Cattle tracing databases have become major resources for representing demographic processes of livestock 
and assessing potential risk of infections spreading by trade. The herds registered in these databases are nodes 
of a network of commercial movements, which can be altered to lower the risk of disease transmission. In this study, 
we develop an algorithm aimed at reducing the number of infected animals and herds, by rewiring specific move‑
ments responsible for trade flows from high‑ to low‑prevalence herds. The algorithm is coupled with a generic 
computational model based on the French cattle movement tracing database (BDNI), and used to describe different 
scenarios for the spread of infection within and between herds from a recent outbreak (epidemic) or a five‑year‑
old outbreak (endemic). Results show that rewiring successfully contains infections to a limited number of herds, 
especially if the outbreak is recent and the estimation of disease prevalence frequent, while the respective impact 
of the parameters of the algorithm depend on the infection parameters. Allowing any animal movement from high 
to low‑prevalence herds reduces the effectiveness of the algorithm in epidemic settings, while frequent and fine‑
grained prevalence assessments improve the impact of the algorithm in endemic settings. Our approach focusing 
on a few commercial movements is expected to lead to substantial improvements in the control of a targeted dis‑
ease, although changes in the network structure should be monitored for potential vulnerabilities to other diseases. 
This general algorithm could be applied to any network of controlled individual movements liable to spread disease.

Keywords Control strategy, epidemiology, data‑based, network, stochastic model

Introduction
Following bovine spongiform encephalopathy and clas-
sical swine fever epidemics in the 1990s, the European 
Union initiated the mandatory identification and regis-
tration of cattle [1]. This decision led to the creation of 
national identification databases, such as the cattle trac-
ing system in the United Kingdom [2, 3], the French 
national bovine identification database (BDNI) [4, 5], the 
Italian national bovine database [6, 7] and the database 

of the Swedish board of agriculture [8, 9]. Of course, 
such databases also exist outside Europe, for instance in 
West Africa [10], Chile [11], Paraguay [12] or Brazil [13]. 
These animal tracing systems have enabled the monitor-
ing of infectious livestock diseases and the development 
of strategies to prevent their spread [14–16], since animal 
trade is a major transmission pathway between herds. 
Indeed, commercial exchanges are not only recorded 
comprehensively, but also controlled by farmers, unlike 
animal mobility in the wild. These databases, whose reli-
ability has increased over time since their creation [17], 
are therefore powerful tools for simulating infectious 
diseases in cattle [13, 18, 19] and assessing the impact of 
livestock movements on epidemics [11, 12, 20].

The information provided by these commercial ani-
mal movements can be used as a basis for representing 
comprehensively the demographic processes and trades 
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between cattle farms located in a given region, using a 
metapopulation framework [21, 22]. To this end, disease 
transmission between individuals within a defined set of 
herds can be modelled, by combining an epidemiologi-
cal model with existing data on births, deaths and move-
ments. This type of models accounts at least for two ways 
of spreading the infection: by contact within a herd, or 
by actually moving animals between herds. This is for 
instance the case for paratuberculosis, a cattle disease 
mainly spread between herds by trade [23, 24]. Manipu-
lating the structure of cattle movement is expected to 
have a direct impact on the latter and an indirect impact 
on the former.

The structure of these trade movements can be under-
stood through the prism of graph theory: herds are the 
vertices of a commercial exchange network, whose edges 
are the movements of livestock [25]. Thus, each herd can 
be characterised using graph metrics, e.g. the in- and 
out-degree, i.e. the number of herds it has respectively 
bought animals from and sold animals to. Network-based 
control strategies then aim to modify the structure of 
the network to reduce infection risks. Removing verti-
ces [4, 26] or edges [27, 28] through trade ban or culling 
is a method used to slow down epidemics. In a context 
of cattle exchange however, preventing farmers from 
buying or selling livestock entails high economic costs. 
Therefore, this strategy cannot be used routinely or over 
extended periods of time. It is likely better suited to the 
management of regulated diseases, the consequences of 
which are also very costly and for controlling outbreaks 
of newly introduced diseases. Conversely, the application 
of such drastic methods on the longer term for endemic 
diseases may not be feasible.

Edge rewiring is a less radical approach able to balance 
the trade-off between health risks and economic costs. 
This method corresponds to the modification of one or 
both vertices that an edge connects [29–32]. Although 
most of the theoretical literature on the subject rather 
considers rewiring in the context of human contact net-
works, it has also been used to study epidemic spread 
in cattle movement networks [20, 33–35]. For instance, 
Gates and Woolhouse [33] present a rewiring method 
that creates an entirely new movement network discon-
necting large buyers from large sellers, while retain-
ing the total number of animals bought or sold by each 
herd. This method requires information at the network 
level, the criteria used being the distributions of in- and 
out-degrees of all herds. Global-level information is also 
generally required for most rewiring methods in contact 
networks, although Piankoranee and Limkumnerd [30] 
proposed a method based on local information. In their 
study, rewiring is decided at the vertex level, according to 
its status and those of its direct neighbours. Controlling 

cattle movements depending on the sanitary status of 
their origin has been proposed in previous studies, e.g. by 
Hidano et al. [36]. Their study presents different scenarios 
regarding farmers’ practices, especially their tendency to 
avoid buying cattle from regions with a higher incidence 
of bovine paratuberculosis. The approach presented here 
is similar, albeit at a finer grain: preventing farmers from 
buying cattle from herds with a higher prevalence of the 
target disease.

This study presents a new rewiring method to reduce 
the spread of infections in a cattle movement network. 
To do this, we developed a rewiring algorithm aimed at 
preventing the movements of animals from higher-prev-
alence herds to lower-prevalence ones. It was based on 
an edge-level criterion: the estimated difference in prev-
alence between the herd of origin and the herd of des-
tination of the movement considered. For this study, we 
tested the algorithm in conjunction with a computational 
epidemiological model describing the spread of a non-
specific disease, whose infectiousness was parametrically 
defined. The impact of the algorithm was tested using a 
real commercial movement network, based on dataset 
from the French cattle tracing system (BDNI). In contrast 
with similar rewiring approaches developed recently to 
target specific diseases [20, 35], we propose a more gen-
eralist approach aimed at investigating the effectiveness 
of this type of method in a broader context. After pre-
senting the movement network used as an example, the 
model and the algorithm, we consider various outputs of 
simulations with and without rewiring, concerning the 
functioning of the algorithm itself, its impact on infection 
propagation, and on the structure of the cattle movement 
network.

Materials and methods
Cattle movement network
In order to test the algorithm on an actual network of 
commercial bovine movements, we use an extraction 
from the French national bovine identification database 
(BDNI). It includes all cattle herds in Brittany (a French 
region) that sold or bought at least one animal during the 
year 2014. This set of 21 548 herds is referred to as the 
“metapopulation” thereafter. Every animal in the data-
set is included regardless of breed or age. Three types of 
commercial exchanges are considered: (i) “internal move-
ments” have an origin and a destination among the herds 
in the dataset, (ii) “imports” have only a destination in the 
dataset and (iii) “exports” have only an origin in the data-
set. They represent respectively 64%, 16% and 20% of the 
commercial exchanges involving at least one herd of the 
metapopulation. Each commercial exchange of animals is 
assumed to take place directly from one herd to another, 
neglecting intermediaries. Hence, markets and sorting 
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centres are not considered for this study. They differ from 
herds in that they tend to concentrate a large number of 
animals, but for a limited period of time (less than a day 
for markets, a few days for sorting centres). Besides, the 
dataset also includes information about demographic 
events, which are considered as a special type of move-
ment: (iv) births have only a destination, corresponding 
to the herd where the animal is born, and (v) deaths are 
considered the same way as exports: they have only an 
origin, corresponding to the last herd recorded for the 
animal.

The dataset is represented as a network, with herds and 
internal movements corresponding to the vertices and 
edges, respectively. This network is (i) dynamic, i.e. move-
ments are characterised by the date at which they occur, 
(ii) weighted, i.e. a single edge represents the set of all 
movements from herd A to herd B, with a weight corre-
sponding to the number of movements, and (iii) directed, 
i.e. movements from herd A to herd B are accounted for 
separately from movements from herd B to herd A. This 
network includes 21,548 vertices and 100 088 edges. The 
total number of internal movements over the year 2014 is 
206 640, so the average edge weight is 2.06.

Epidemiological model: within and between‑herd 
dynamics and epidemiological settings
The model developed aims to simulate pathogen trans-
mission within herds, and infection spread between 
herds through cattle movements. A full description of the 
model is included in Additional file 1. The model is sto-
chastic in discrete time—each time-step corresponding 
to a day of 2014—and in discrete space—by integrating 
the network of herds and movements described above. 
Commercial exchanges and demography are data-based: 
movement m is characterised by its origin Om, its desti-
nation Dm, its date according to the dataset Tm

∗ and the 
date at which it is simulated Tm. By default, movements 
are simulated according to the dataset, i.e. Tm = Tm

∗. 
Within-herd dynamics are based on a SIRS model with 
three parameters: the infection rate β, the recovery rate 
γ—therefore the average infection duration is 1/γ—and 
the rate of return to susceptibility δ. Transmission is 
here modelled as density- dependent, i.e. contact rates 
are assumed to increase with the number of animals in 
the herd, as opposed to frequency-dependent transmis-
sion, i.e. contacts are assumed to be constant. Both meth-
ods are used to model cattle diseases [37–39], and there 
is no strong incentive to choose one over the other for 
this study, as the epidemiological model does not aim at 
reproducing a specific disease. The surface area of hold-
ings can affect the density-dependent transmission rate 
in the herds, so that contacts actually depend on the ratio 
between numbers and area [38, 40]. However, this area 

cannot be easily inferred from the number of animals, 
as the relationship between the two is not necessarily 
proportional and might depend on cattle management 
practices (e.g. extensive vs. intensive). Since these surface 
areas are not known, they are simply assumed to be the 
same. It should be noted that this choice could lead to 
disproportionately high modelled transmission rates in 
the largest herds. At each time-step t, herd h is character-
ised by its number of susceptible, infected and recovered 
individuals, noted respectively Sh(t), Ih(t) and Rh(t). The 
total herd size Nh(t) is defined as the sum of these three 
values and infection prevalence as Ph(t) = Ih(t)/Nh(t).

Each simulated infection begins with an initial outbreak 
in a metapopulation without infection, i.e. with only sus-
ceptible individuals. At t = tI, the date of the outbreak, 
10% of all herds in the metapopulation are simultane-
ously infected, by replacing 1 susceptible individual with 
1 infected individual in each of the herds. The initially 
infected herds are randomly drawn for each simulation, 
so that a variety of potential initial outbreaks is tested. 
The probability that a herd is initially infected is propor-
tional to the number of imports in the herd, according to 
the 2014 dataset. The rationale is that herds receiving the 
most individuals from herds outside of the metapopula-
tion are the most likely to introduce a new infection.

Two types of infections are considered for the study: 
epidemic and endemic. An infection is defined as “epi-
demic” if its outbreak occurs at the start of the simula-
tion, i.e. if t0 = tI. The initial state of the infection is then 
as described above. An infection is defined as “endemic” 
if its outbreak occurs five years before the start of the 
simulation, i.e. t0 = tI + 1825 days. In this case, the initial 
state of infection is the result of preliminary simulation 
of a five-year infection using the same epidemiologi-
cal model and a cattle movement network also retrieved 
from the BDNI, similar to the 2014 dataset presented 
above, but concerning herds exchanging cattle in Brittany 
from 2009 to 2013. This five-year movement network 
includes 26 075 different herds exchanging cattle (20 367 
herds per year on average), for a total of 1 061 580 move-
ments (212  316 movement per year on average). Pre-
liminary simulations for which the infection goes extinct 
before t0 are discarded, so that no disease-free initial state 
is considered.

Six epidemiological settings are defined, corresponding 
to three sets of parameters of the SIRS model (β, γ and δ) 
for each of the two infection types (epidemic or endemic). 
Additional file  2 presents two clustering analyses per-
formed on simulations of the model over the year 2014 to 
define these infection settings. For both endemic and epi-
demic diseases, this analysis discriminates between three 
settings that correspond to the overall severity of the dis-
ease: weak, moderate or strong. The parameters values of 
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the SIRS model corresponding to a given epidemiological 
setting are the average values of the simulations belong-
ing to the corresponding cluster.

Prevalence status of the herds
The algorithm developed for this study performs rewiring 
based on herd prevalence classes, numbered from 1 to c. 
Class i includes all prevalence values between bi and bi+1, 
with the lowest boundary b1 = 0 and the highest boundary 
bc+1 = 1. At time t, herd h is assigned a “real” prevalence 
status, noted V r(t), corresponding to the prevalence class 
including its prevalence, i.e. Vh

r(t) = i if Ph(t) ∈ [bi; bi+1[, 
with Vh

r(t) = c + 1 if Ph(t) = 1. Yet, the algorithm does not 
actually use this status, but rather an ‘observed’ preva-
lence status, noted Vh

o(t). The observed status is equal to 
the real status recorded at time tobs, which then remains 
the same for q time-steps, i.e. Vh

o(t) = Vh
r(tobs) ∀ t ∈ [tobs; 

tobs + q[. At the next recording q time-steps later, i.e. at 
tobs + q, the observed status of the herd is updated to cor-
respond to the real status at that date. No additional error 
on the observed status is assumed, so that it always cor-
responds to the real status at tobs. Additional file  3 pre-
sents an assessment of the impact of other sources of 
error, such as imperfect test sensitivity or testing a sub-
set of animals in the herd, on the accuracy of herd sta-
tuses. Conversely to differences between the real (Vh

r(t)) 
and observed prevalence status (Vh

o(t)), which accumu-
late over time since the last observation, such sources of 
errors generate an additional uncertainty about observed 
status constant over time. Both sources of error contrib-
ute in a similar way to this uncertainty, but the number 
of herds assigned the right status is greater than 70% 
for the most extreme case tested (only 30% of animals 
tested with a sensitivity of 0.5 for a strong disease), and 
remains above 80% when considering weak or moderate 
epidemiological settings. While their impact can become 
notable in these worst cases, classes therefore remain a 
valid proxy for the prevalence of the herds, which is used 
here to evaluate the commercial exchanges between 
herds. More precisely, the algorithm aims at identifying 
and preventing movements “at risk”, i.e. for which the 
observed status of the origin is strictly greater than that 
of the destination.

Sequential rewiring
The algorithm works by permuting the origins of pairs 
of movements, one of which is at risk, so that neither of 
them is at risk after the rewiring. The pairs of movements 
are created such that 1 ≤ cON ≤ cDR < cOR ≤ cDN ≤ c, with 
cOR and cDR the observed status of the origin and destina-
tion of the movement at risk, while cON and cDN are the 
observed status of the origin and destination of the other 
movement. By permuting the origins, the algorithm 

creates a movement with an origin of status cON and a 
destination of status cDR, and another movement with an 
origin of status cOR and a destination of status cDN. Then, 
neither of the two movements is at risk, since cON ≤ cDR 
and cOR ≤ cDN.

For all movements set to occur at a given time-step, 
the algorithm performs these permutations in a specific 
order to ensure that the algorithm performs every pos-
sible rewiring. Additional file 4 describes in pseudo-code 
the functioning of the algorithm over a single time-step, 
which proceeds as follows. Firstly, it defines all possible 
quadruplets of prevalence classes {cOR, cDR, cON, cDN}. 
These quadruplets are arranged primarily in ascend-
ing order of cDR, secondarily in descending order of cOR, 
thirdly in ascending order of cON and fourthly in descend-
ing order of cDN, which ensures that no potential permu-
tation is missed. For each quadruplet, the algorithm then 
permutes the origins of k pairs of movements, with k the 
minimum between the number of movements at risk and 
the number of other movements considered.

Once all possible permutations are performed, there 
might be remaining movements at risk set to be per-
formed on this time-step. Firstly, these remaining move-
ments are postponed to the next day, to be potentially 
rewired with another set of movements. The postponed 
movements are then prioritised for rewiring on the fol-
lowing day. Yet, postponing commercial movement 
represents a constrain for farmers. Therefore, a maxi-
mal delay during which a movement can be postponed 
∆MAX is fixed for the algorithm. Thus, remaining move-
ment m is postponed to the next day only if it was not 
already postponed ∆MAX days, i.e. if Tm − Tm

∗  < ∆MAX. 
If the algorithm prohibits any movement at risk, the 
remaining movements that cannot be postponed (called 
‘problematic’ movements) are replaced by one export 
with the origin of the problematic movement as origin 
and one import with the destination of the problematic 
movement as destination. If the algorithm does not pro-
hibit any movement at risk, the problematic movement 
is set to occur as such. Overall, the algorithm therefore 
depends on four parameters: the number of prevalence 
classes c, the period at which observed status is updated 
q, the maximum delay ∆MAX and whether movements at 
risk are prohibited.

Simulations
Simulations of infections with or without using the algo-
rithm are performed on the dataset between 01/01/2014 
(defined as t = 0) and 01/01/2015 (t = 365). The effective-
ness of the algorithm is tested by running simulations 
with 3 × 3 × 3 × 2 combinations of the algorithm param-
eters, respectively (i) the number of prevalence classes 
c (2, 3 or 4 classes), (ii) the update period q (1, 28 or 
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91 days), the maximum delay ∆MAX (1, 3 or 7 days) and 
(iv) the prohibition of movements at risk (yes or no). 
Each combination, as well as a control without rewiring, 
is simulated 100 times for each of the six epidemiological 
settings defined above.

As indicated above, preliminary simulations are carried 
out for each epidemiological setting between 01/01/2009 
(t =  − 1825) and 31/12/2013 (t =  − 1), with an initial out-
break at tI =  − 1825. The distributions of prevalence val-
ues in the metapopulation at t =  − 1 are used to define 
the boundaries of the prevalence classes used by the 
algorithm. To account for the potentially large number of 
disease-free herds, two methods are defined. If less than 
1/c herds are disease-free, bi is defined as the ((i − 1)/c)
th quantile of the distribution. This is the case for c = 2 
in the strong epidemic and endemic epidemiological set-
tings (Additional file  5). If more than 1/c herds are dis-
ease-free, the first class includes only disease- free herds, 
i.e. b1 = b2 = 0, while bi is the ((i − 2)/(c − 1))th quantile of 
the distribution for i > 2. This is the case for all the other 
combinations of epidemiological settings and values of c 
(Additional file  5), so that the algorithm includes a dis-
ease-free class in most simulations.

Using quantiles to define classes ensures that herds 
are distributed equally between them. Hence, the actual 
boundary values increase with the severity of the disease, 
being lower for weak epidemiological scenarios for which 
prevalence levels are expected to be overall lower, and 
higher for strong epidemiological scenarios for which 
they are expected to be overall higher (Additional file 5). 

Considering the same boundaries between classes across 
epidemiological scenarios could lead to very unevenly 
distributed herds across prevalence classes, making some 
classes essentially useless for rewiring.

Outcomes and analyses of numerical explorations
The simulations outcomes are listed in Table 1. They are 
related either to (i) the functioning of the algorithm, (ii) 
the infection or (iii) the network of internal movements 
modified by the algorithm.

The algorithm-related outcomes nrew(t), ndel(t) and 
nprob(t) are computed each time-step after rewiring, while 
nrisk(t) and nerr(t) are computed before rewiring. These 
latter outcomes are computed by using the real preva-
lence status of the herds, rather than the observed ones. 
A movement m is included in nrisk(t) if VOm

r(t) > VDm
r(t), 

and also included in nerr(t) if VOm
o(t) ≤ VDm

o(t) at the 
same time. The proportion of undetected movements at 
risk is computed on a weekly basis, to account for intra-
week variability in the number of livestock movements. 
Over week w, this proportion perr(w) is:

The Spearman’s correlation coefficient ρ between 
perr(w) and the number of weeks since last update 
(from 1 to 4 weeks if q = 28 days, from 1 to 13 weeks if 
q = 91  days) is also computed to assess the relation-
ship between errors in herd prevalence status and time. 

perr(w) =

∑
7w
t=7(w−1)+1

nerr(t)
∑

7w
t=7(w−1)+1

nrisk(t)

Table 1 Outcomes computed from the simulations 

Outcomes of the simulations related to the behaviour of the algorithm, the spread of the simulated infection or the structure of the movement network. The infection‑
related outcomes were computed for each simulation separately. The algorithm and network‑related ones were computed for each simulation with the algorithm.

Outcomes related to Notation Description

Algorithm nrew(t) Number of movements rewired at time t

ndel(t) Number of delayed movements at time t

nprob(t) Number of problematic movements at time t

nrisk(t) Number of movements at risk at time t

nerr(t) Number of movements undetected as at risk at time t

Infection ninf Number of herd infections

next Number of herds in which the infection goes extinct

adur Average duration of infection

cinc(t) Cumulative incidence at time t

nherd(t) Number of infected herds at time t

nind(t) Number of infected individuals in the metapopulation at time t

aprev(t) Average prevalence in the infected herds at time t

Network nSCC Number of strongly connected components

maxSCC Size of the largest strongly connected component

indh In‑degree of herd h

outdh Out‑degree of herd h
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The Spearman’s coefficient is preferred because it does 
not assume any particular distribution of the involved 
variables.

The impact of the algorithm on the infection dynamic 
is estimated through cinc(t), i.e. the cumulative number 
of herds newly infected over the simulation. The varia-
tions in nherd(t) and nind(t) over time are also presented 
in Additional file  6. Besides, the overall impact of the 
algorithm on the infection is assessed using a global mul-
tivariate sensitivity analysis, following Lamboni et  al. 
[41] and using the multisensi package of the R software 
[42], which is used to perform sensitivity analyses on a 
multivariate output. For this analysis, twelve variables 
are derived from the infection-related outcomes. The 
three outcomes computed once per simulation ninf, next 
and adur are used as such. In addition, the maximum, 
minimum and final values over the whole period simu-
lated (respectively noted max(u(t)), min(u(t)) and u(365) 
for outcome u(t)) of nherd(t), nind(t) and aprev(t) are also 
computed. The analysis includes a principal component 
analysis (PCA) on the scaled variables, which are used as 
the multivariate output for the sensitivity analysis. Two 
generalised sensitivity indices (GSI), which are weighted 
means of the sensitivity indices over all the dimensions 
of the PCA, are computed for each algorithm parameter: 
the total index (tGSI) including interactions with other 
parameters, and the first-order index (mGSI), not includ-
ing them. The first principal component of the PCA is 
also used to assess the distribution of the simulations 
depending on the algorithm parameters.

The network-related outcomes are based on a static 
view of the network aggregating all the internal move-
ments performed during the simulation, from t = 0 to 
t = 365. Therefore, they take into account the rewiring 
performed by the algorithm, and the potential removal 
of problematic movements if movements at risks are 
completely prohibited. The outcomes recorded for the 
modified networks are compared to the same metrics 
for the original network defined by the 2014 dataset. The 
strongly connected components—from which nSCC and 
maxSCC are computed—correspond to groups of vertices 
linked to each other by a directed path. The percentiles 
of the distributions of indh and outdh of all herds in the 
static network are used to assess the in-degree and out-
degree distributions, respectively.

Results
Outcomes related to the algorithm
Our results show that number of movements rewired 
varies greatly depending on the date of the outbreak. It 
is negligible in the epidemic settings, with 80% of simu-
lations with a total of rewired movements between 192 
(fewer than 0.1% of all movements) and 2250 (1.1%). 

However, it is larger in the endemic settings, with 80% 
of simulations with between 17  344 (8.4% of all move-
ments) and 33 640 (16.3%) movements rewired. Besides, 
increasing the value of ∆MAX logically increases the 
number of delayed movements (which is 0 by definition 
for ∆MAX = 0) and decreases the number of problematic 
movements. In the endemic settings, the problematic 
movements represent a small proportion of the move-
ments detected as high risk (median: 5.4%,  9th decile: 
17.4%). In the epidemic settings however, they represent 
a larger part (median: 14.3%,  9th decile: 59.7%), although 
their absolute numbers remain low (median: 129,  9th 
decile: 651). Because of the overwhelming number of ini-
tially non-infected herds in these simulations, the move-
ments at risk are likely more difficult to rewire, and thus 
more likely to be tagged as problematic by the algorithm.

Increasing the herd status update period q is not asso-
ciated with a decrease in the number of rewiring events 
(Figures  1A, B). The value of q is even rather positively 
correlated with the number of rewiring events in epi-
demic settings. This suggests that the algorithm per-
forms more erroneous rewiring as q increases. This 
is confirmed by the distributions of Spearman’s cor-
relation coefficient between perr(w) and the number of 
weeks since last update ρ with q = 91  days (Figure  1D), 
in epidemic settings (80% of values of ρ between −0.01 
and 0.50) and in endemic settings (80% of values of ρ 
between 0.39 and 0.75). This is also somewhat the case 
with q = 28  days (Figure  1C), although the correlations 
are weaker, in endemic (80% of values of values between 
−0.09 and 0.79) as well as in epidemic settings (80% of 
values of values between −0.05 and 0.34).

The average proportions of undetected movements at 
risk perr(w) all tend to increase with the number of weeks 
since the last update w (Figures  1E, F). This increase 
is systematically greater for the largest value of q, up to 
perr(w) = 0.3. However, they also appear to reach a plateau 
after 10  weeks. This suggests that a further increase in 
the update period q would not strongly increase the pro-
portion of undetected movements at risk. As for Spear-
man’s correlation coefficient ρ, the increase is greater in 
endemic settings than in epidemic settings.

Additional file 3 presents an assessment of the impact 
of other sources of error, such as imperfect test sensi-
tivity or testing a subset of animals in the herd, on the 
accuracy of herd statuses. While differences between the 
real (Vh

r(t)) and observed prevalence status (Vh
o(t)) are 

expected to accumulate over time since the last observa-
tion, including such sources of errors generate an addi-
tional uncertainty about observed status constant over 
time. Both sources of error contribute in a similar way to 
this uncertainty, although the number of herds assigned 
the right status never goes below 70% in the worst case 
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tested (only 30% of animals tested with a sensitivity of 
0.5), and below 80% when considering weak or moderate 
epidemiological settings only.

Outcomes related to the infection
Comparison of the results with and without rewiring 
shows the overall effectiveness of the algorithm in con-
taining the infection (Figure 2). Regardless of the epide-
miological setting and the combination of parameters 
considered, the cumulative number of herds newly 
infected cinc(t) remains systematically lower after rewir-
ing. The algorithm is particularly effective in weak and 
moderate epidemic settings, where very few herds are 
infected during the year. In other epidemiological set-
tings, the impact of the algorithm varies more strongly 
depending on the scenario considered. Results for 
nherd(t) and nind(t) are presented in Additional file  6. 
In epidemic settings, variations in nherd(t) logically fol-
low closely those of cinc(t). Hence, the algorithm also 
reduces the increase in the total number of infected 
herds. It also reduces the total number of infected 
individuals, although the impact is not as strong as for 
herds. In endemic settings, the value of nherd(t) remains 
similar during the whole simulation without rewiring 
(Additional file  6), despite new infections according 

to variations in cinc(t). This indicates a turnover in the 
infection at the metapopulation level, with populations 
losing the infection through the acquisition of resist-
ance or the culling and trade of infected animals. By 
reducing the number of new infections, the algorithm 
therefore reduces the total number of infected herds 
over time. However, its impact is smaller on the total 
number of infected individuals (Additional file 6).

The sensitivity analysis shows differences in the relative 
importance of the algorithm parameters on the reduc-
tion of the infection (Figure  3). Three different patterns 
of sensitivity to the algorithm parameters are observed. 
Firstly, simulations in weak and moderate epidemic set-
tings exhibit an overwhelming sensitivity to the prohi-
bition of movements at risk. Secondly, those in strong 
epidemic or endemic settings exhibit a strong sensitiv-
ity to the number of prevalence classes c. Finally, those 
in weak and moderate endemic settings exhibit a more 
balanced sensitivity to all parameters, with a substantial 
difference between total and first-order indices for the 
maximum delay ∆MAX, the number of classes and the pro-
hibition of movements at risk. These differences suggest 
an interaction between the three algorithm parameters. 
Besides, simulations for every epidemiological setting are 
somewhat sensitive to the update period q.
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The PCA performed as a first step of the sensitiv-
ity analysis is used to explore further the way algorithm 
parameters impact the infection-related outputs. Addi-
tional file 7 shows that the first principal component of 
the PCA is globally positively correlated with outputs 
describing the extent of the infection. The distribu-
tions of simulations along this first principal component 
therefore provides information about the way algorithm 
parameter values affects the extent of the infection. Addi-
tional file 8 presents these distributions for every epide-
miological setting and every algorithm parameter, while 
Figure 4 displays some of the most relevant distributions. 
Figure 4A shows that, in the weak epidemic setting, simu-
lations in which movements at risk are prohibited almost 
always score lower on the first principal component than 
those in which they are not. The distribution is simi-
lar in the moderate epidemic setting (Additional file  8), 
which has similar sensitivity indices (Figure 3). Interest-
ingly, distributions of simulations in strong epidemic or 
endemic settings show that those with c = 2 score higher 
on their respective first component, while those with 
c = 3 and c = 4 are not different (Figures 4B, F). A similar 

pattern is observed with the maximum delay in the weak 
endemic setting: only simulations with ∆MAX = 0 score 
higher on the first principal component (Figure  4D). In 
the strong epidemic setting, the two high-scoring peaks 
in the distribution according to c (Figure 4B) correspond 
to the simulations with q = 28 and q = 91 (Figure  4C), 
highlighting an interplay between the number of classes 
c and the update period q. No interplay between ∆MAX 
and q is visible in the weak endemic setting, although 
Figure 4E shows that the score of simulations on the first 
principal component is positively correlated with q. Dis-
tributions in the moderate endemic setting are similar to 
those in the weak endemic setting (Additional file 8).

Outcomes related to the movement network
In endemic settings, rewiring movements increase the 
in- and out-degrees of the herds, i.e. the number of dif-
ferent herds they are connected to (Additional file  9). 
The increase is small but systematic, for every algorithm 
parameter value. In addition, the algorithm also affects 
the strongly connected components of the network 
in endemic settings. On the one hand, the algorithm 
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reduces their number, all the more that the infection was 
strong (Figure 5). On the other hand, the size of the larg-
est strongly connected component is increased in most, 
but not all simulations (64%, 67% and 80% of simulations 
in low, moderate and high endemic settings, respectively). 
It should be noted that the lesser impact of the algorithm 
on the network in epidemic settings can be explained by 
a number of rewiring events 25 times smaller on average 
than in endemic settings.

Discussion
Main results
The rewiring algorithm we developed for this study is 
able to reduce the extent of infections, in the absence 
of any other restriction measure and for a large panel of 
disease parameters (infection rate β, recovery rate γ or 
rate of return to susceptibility δ). However, the extent 
of the reduction varies between the different epidemio-
logical settings considered. Indeed, infections are almost 
completely prevented with weak or moderate epidemic 
settings, while they still develop or persist for other 

settings, although not as much as without any rewiring. 
However, the decrease in the number of infected herds is 
not necessarily coupled with a decrease in the number of 
infected individuals. This result highlights the tendency 
of the algorithm to concentrate infected individuals in 
the already infected herds. The algorithm therefore per-
forms a trade-off that is beneficial to the metapopulation 
as a whole—with fewer infected herds—but detrimental 
to the smaller number of already infected herds, in such a 
situation where movement rewiring is not combined with 
complementary on-farm measures to reduce within-
herd infection prevalence. This is the case for the infec-
tions in an epidemic setting, in which the prevalence in 
the infected herds increases over the year. This is also the 
case for infections in endemic settings, in which new sen-
sitive individuals could still be born or imported.

The sensitivity analysis on the infection-related out-
comes reveals that the impact of the parameters of the 
algorithm is highly dependent on the epidemiological 
setting. Prohibiting the movements at risk, i.e., removing 
the movements that cannot be rewired and are delayed 
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as much as possible, is mostly significant if the infec-
tion is not too strong and is just beginning. Only in these 
cases can the infection be fully contained by the rewir-
ing. Increasing the maximal delay improves the perfor-
mance of the algorithm in an endemic setting, for which 
the number of movements rewired is much larger than 
in epidemic settings. In those, delaying the movement 
to the next day increases substantially the opportunities 
for rewiring. The other two parameters are both related 
to the definition of the prevalence statuses used by the 
algorithm. A greater number of prevalence classes, 
which mainly impacts rewiring during strong infec-
tions, improves the separation of disease-free herds from 
the rest. Indeed, only for strong infection and c = 2 does 
the lowest prevalence class herds with no infected indi-
vidual with herds with few infected individuals (Addi-
tional file 5), thus preventing the algorithm to efficiently 
protect disease-free ones. This result therefore supports 
the systematic inclusion of a class for herds with a zero 
prevalence in all cases. A longer update period between 

updates of the prevalence status makes the rewiring algo-
rithm more error-prone, with a proportion of undetected 
movements at risk increasing with the time since the last 
update, at least up to 10 weeks. This result is visible for 
any epidemiological setting, suggesting that any increase 
in the frequency of update to the status of the herds 
should improve the effectiveness of the algorithm. Con-
versely, the results indicate that increasing the number of 
prevalence classes to more than two, or having a maxi-
mum delay greater than zero, improves the efficiency of 
the algorithm much more than further increases.

As expected, the impact of rewiring on the commercial 
movements network structure is limited, as it targeted a 
few movements only: less than 20% of the movements for 
endemic infections and less than 2% of them for epidemic 
infections. Nevertheless, rewiring tends to increase the 
overall connectedness of the herds during endemic infec-
tions. Indeed, the increase in degree and in size of the 
largest strong component indicates that the algorithm 
has connected herds that were originally not so. These 
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metrics are generally correlated with higher expected 
epidemic risks [25, 43]. The use of such a rewiring 
method to manage actual bovine movements should take 
into account this potential increase in the risk of spread-
ing other diseases. The algorithm could be extended to 
assess multiple diseases at once, but the additional con-
straints on rewiring would likely reduce its effectiveness.

The generality of the epidemiological model and of the 
algorithm used for this study makes the rewiring method 
we developed applicable to a much wider range of net-
works in animal and plant populations than just cattle, 
e.g. among seed exchange networks, which face similar 
infection risks [44, 45]. The SIRS model used allows for 
great flexibility in the type of disease considered, but the 
algorithm would also function with a disease-specific 
model, provided prevalences can be estimated from the 
epidemiological model used. Besides, while the need for 
controlled movements makes this method more relevant 
to agricultural systems, the spatial and temporal scales 
considered can also be adapted depending on the con-
text. Indeed, the daily time-step and the region level were 
used here as they correspond to the BDNI data structure, 
but are not necessary for the algorithm to work. The use-
fulness of our rewiring method could therefore extend 
beyond cattle concerns, even though the effectiveness of 
the algorithm in other contexts remains to be tested.

Limitations
Although the algorithm is tested on historical data from 
the BDNI for this study, it could also be intended to be 

used prospectively as part of decision-making tools. 
While it would be possible, actually using the algorithm 
would require overcoming some hurdles linked to its use 
in a real-life context.

First, one would have to ensure the quality of preva-
lence estimations. Indeed, our results show that the 
optimal functioning of the algorithm relies on get-
ting accurate and frequent prevalence data from a large 
number of farms. While bulk milk-based sampling sys-
tems could be used for some diseases in cattle, e.g. with 
bovine viral diarrhoea [46, 47], this cannot be general-
ised to other diseases. Testing only a fraction of the ani-
mals in the herd can be envisioned to reduce costs, with 
an impact, albeit limited for the less severe diseases, on 
the assignment of herds to the correct prevalence sta-
tus (Additional file 3). Besides, the test of our algorithm 
does not account for imperfect sensitivity or specific-
ity of the tests used. While test specificity is generally 
high for cattle diseases [48–51], sensitivity can be low, 
thus limiting the number of infected animals detected 
and altering the observed prevalence. The impact of low 
sensitivity on erroneous herd status assignment is of the 
same order as that of testing only a fraction of the ani-
mals (Additional file  3). Their impact is likely mitigated 
by the use of prevalence classes, each of them spanning 
across a range of prevalence values, so that small inaccu-
racies in the prevalence estimation of a given herd does 
not necessarily change its assigned status. However, their 
impact also appears to be additive, so the decision to test 
fewer animals in each herd should for instance take test 
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sensitivity into account in order to limit the overall error, 
particularly for the stronger diseases for which this error 
is generally greater.

Another way to reduce the sampling effort would be to 
focus on a subset of herds to monitor. Firstly, this sam-
pling effort could take into account additional informa-
tion available thanks to measures already in place. For 
instance, the status of some herds could be approximated 
through health accreditation schemes (e.g. [20]), with 
herds already identified as disease-free could be automat-
ically assigned the lowest prevalence status for a given 
duration. Secondly, monitored herds could be selected 
based on their role in disease spread, notably through 
network metrics. Indeed, central herds in the movement 
network, i.e. those through which a large proportion of 
animal movements pass, are expected to play a larger 
role in the spread of infection [4, 52]. Hoscheit et al. [53] 
reviewed centrality measures taking into account the 
dynamic nature of the movement network, based on the 
BDNI. They found that the TempoRank index would for 
example be a good candidate for selecting a subset of 
herds to be specifically monitored and taken into account 
by the algorithm.

In this study, we use a network corresponding to com-
mercial movements between every farm in Brittany (an 
administrative region of France) over the year 2014 to 
test the efficiency of the algorithm. On the one hand, 
the age of the data must be taken into account, as the 
structure of the current movement network on which 
the algorithm could potentially be used may have since 
changed, with potential implications on the algorithm 
performance. Variations in the network structure of 
the BDNI have been investigated over a 5-year period 
[5]. Results suggests that most network metrics remain 
largely stable over time, the main trend being a decrease 
in the number of herds in the network, likely because of 
acquisitions and mergers of farms. Although this change 
in the number of herds should be taken into account as 
it could modify the rewiring opportunities for the algo-
rithm, the otherwise stability of the network indicates 
that our results should remain largely applicable to the 
current network. On the other hand, the spatial scale of 
the data must also be taken into account. The choice to 
consider a single region is notably motivated by com-
putational limitations. Indeed, simulating a stochastic 
spread of the disease on a national scale over six years—
five for the preliminary simulations and one for the main 
simulations—would have been considerably more costly, 
thus limiting the exploration of variations in the parame-
ters of the SIRS model and the algorithm. Yet, this choice 
has additional implications that should be underlined.

Firstly, a substantial proportion of the movements 
involve herds outside of Brittany and are therefore not 

concerned by the rewiring. Indeed, 20% of all movements 
whose destination is in the metapopulation have an ori-
gin outside of it. In our simulations, these imports are 
assumed to not be movement at risk, i.e. that the preva-
lence status of their origin is never higher than that of 
their destination. This is not trivial, as it presumes that 
imports do not create greater infection risks than inter-
nal movements. In a real-life context, applying this rewir-
ing method in a single region would therefore require 
an additional management of the risk associated with 
imports. Yet, extending its use nationally should mitigate 
this problem, as the proportion of imports is expected to 
be much lower at this scale. Secondly, every commercial 
movement between farms is considered to test the algo-
rithm, regardless of breed or age, in order to have a large 
enough set of movements. Indeed, additional criteria, 
concerning for instance the breed of the animals, could be 
added easily by providing the algorithm with movements 
for individuals in each category separately. However, 
such criterion would reduce the rewiring possibilities of 
the algorithm and therefore its effectiveness. Again, the 
network of commercial movements at the national scale 
could be large enough to separate the movements by 
breed or consider only movements of specific breeds.

Finally, the implementation of such an algorithm would 
have to take into account farmers decision. Unless rewir-
ing is enforced, the actual movements would result from 
sanitary concerns as well as other constraints, which 
would impact the effectiveness of the algorithm. Cou-
pling it with a decision-making model could provide 
additional insight on this impact. In order to make it eas-
ier to use as part of such decision-making tools, the algo-
rithm has been specifically designed to be able to include 
additional, different constraints.

Conclusion
This study demonstrates the effectiveness of a rewiring 
method targeting specific movements to reduce infec-
tion risks. Our approach thus differs from that presented 
by Gates and Woolhouse [33], as it also aims at generat-
ing minimal changes in the structure of the movement 
network. This study also builds upon the results from 
Ezanno et al. [20], by confirming the effectiveness of this 
method beyond the case of a specific disease. Indeed, the 
algorithm presented by Ezanno et  al. [20] and later by 
Biemans et al. [35], was developed specifically to address 
the control of bovine paratuberculosis, notably charac-
terised by an endemic status and a low detection rate. 
To do so, they used a specific age-structured epidemio-
logical model [54] and an algorithm calibrated to target 
this disease. This was also the case for instance of Mohr 
et  al. [34], which specifically targeted foot-and-mouth 
disease. Conversely, the present study aims at assessing 
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more comprehensively the effectiveness of the algorithm. 
It is tested for different epidemiological settings – both 
endemic and epidemic – using a non-specific epidemio-
logical model, and for broad range of parameter values. 
This study is therefore complementary to the previous 
ones, by bringing a broader perspective on the impact of 
rewiring in animal movement network on infectious dis-
eases in general.

Abbreviation
BDNI  base de données nationale d’identification animale
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