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Abstract 

Streptococcus suis is a major swine pathogen and zoonotic agent, causing important economic losses to the por-
cine industry. Here, we used genomics approaches to characterize 251 S. suis isolates recovered from diseased 
pigs across Belgium, France, Germany, Hungary, the Netherlands, Spain, and the United Kingdom. We identified 
13 serotypes, being serotypes 9 and 2 the most prevalent, and 34 sequence types (STs), including 16 novel STs, 
although ST16 and ST1 dominated the strain population. Phylogenetic analysis revealed complex genetic relation-
ships, notable geographic clustering, and potential differential capacity for capsular switching among serotype 9 
isolates. We found antimicrobial resistance (AMR) genes in 85.3% of the isolates, with high frequencies of genes con-
ferring resistance to tetracyclines and macrolides. Specifically, 49.4% of the isolates harbored the tetO gene, and 64.9% 
possessed the ermB gene. Additionally, we observed a diverse array of virulence-associated genes (VAGs), includ-
ing the classical VAGs mrp, epf, and sly, with variable presence across different genotypes. The high genetic diversity 
among European S. suis isolates highlights the importance of targeted antimicrobial use and flexible vaccine strate-
gies. Rapid strain characterization is crucial for optimizing swine health management, enabling tailored interventions 
like the development of autovaccines to mitigate S. suis infections.

Keywords  Swine infectious diseases, Streptococcus suis, genomic epidemiology, antimicrobial resistance, virulence-
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Introduction
Streptococcus suis is a swine pathogen responsible for 
important economic losses to the porcine industry [1]. 
The organism can asymptomatically colonize the upper 
respiratory tract of swine and can also cause several 

major diseases in pigs, including sepsis, meningitis, 
arthritis, endocarditis, and sudden death [1–3]. S. suis is 
also an emerging zoonotic agent, capable of transmission 
to individuals who come into close contact with infected 
pigs, handle pork or pork by-products, or, particularly in 
East and Southeast Asia, consume dishes containing raw 
pork or pork blood [4–8].

Serotyping continues to be the main S. suis typ-
ing scheme. Based on an antigenic reaction directed 
against the capsular polysaccharide (CPS), 35 different 
S. suis serotypes were initially recognized, although 6 
of them were later ascribed to other bacterial species 
[9–11]. Thus, the organism currently comprises 29 
serotypes. However, this number does not account for 
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several novel capsular types that have recently been 
recognized using molecular methods [12–17]. In addi-
tion to serotyping, other typing schemes such as multi-
locus sequence typing (MLST) are used to characterize 
S. suis isolates [18], and have been instrumental in dis-
covering a relatively high genetic diversity of the spe-
cies, with more than 2800 described sequence types 
(STs) [19, 20].

Although the prevalence of S. suis serotypes and gen-
otypes varies among different geographical locations 
and time periods, strains of ST1 serotype 2 and ST16 
serotype 9 are frequently recovered from diseased pigs 
in Europe [11]. Additionally, strains of other serotypes 
and genetic lineages, such as ST1552 serotype 1 and 
ST29 serotype 7, have also been associated with swine 
diseases in Europe [21–25]. S. suis has been proposed 
to act as an important reservoir for antimicrobial resist-
ance (AMR) genes, with implications for both swine 
and public health [26]. Several reports from Europe 
that characterized S. suis AMR have noted a high prev-
alence of resistance to tetracyclines, macrolides, and 
lincosamides, as well as to other antimicrobials, raising 
concerns about the role of S. suis in AMR dissemina-
tion [21, 27–33]. However, important knowledge gaps 
remain, highlighting the need for further characteri-
zation of a broader range of isolates from Europe that 
better represents the extent of S. suis genetic diversity.

The virulence of S. suis is multifactorial, and is influ-
enced by a combination of both host and pathogen 
traits [1, 34]. The CPS, which shields the bacterium 
from immune recognition and clearance, is consid-
ered the primary virulence factor [34, 35]. However, a 
wide array of additional factors has been linked to S. 
suis virulence, including many factors whose role(s) 
in the pathogenesis of infection remain debatable [34, 
35]. Indeed, more than 80 virulence-associated genes 
(VAGs) have been described as important for the viru-
lence of the organism. These include traditional VAGs 
such as mrp (encoding a muramidase-released protein), 
epf (an extracellular factor), and sly (the hemolysin 
known as suilysin), as well as several VAGs whose roles 
and prevalence across different S. suis genotypes are 
not yet fully understood [34–41].

In response to increasing concerns about AMR and 
to address gaps in knowledge regarding the prevalence 
of virulence-associated genes (VAGs) among strains 
circulating in Europe, here we characterized using 
genomics 251 S. suis isolates recovered from diseased 
pigs across seven European countries. Our findings 
reveal substantial genetic diversity among these iso-
lates, which displayed a broad spectrum of AMR genes 
and VAGs.

Materials and methods
Isolate collection, DNA extraction, and serotyping
We used a convenience sample comprising 251 S. suis 
isolates recovered between years 2012 to 2020 from dis-
eased pigs in France (N = 138), the Netherlands (N = 62), 
Germany (N = 27), and the United Kingdom (N = 15); a 
few isolates from Belgium (N = 5), Hungary (N = 2) and 
Spain (N = 2) were also included (Additional file 1). The 
majority of these isolates had been used or considered for 
use in autovaccine formulations, providing a representa-
tive snapshot of the prevalent field strains responsible 
for infections across these regions. For molecular testing 
and genome sequencing, strains were grown overnight in 
Todd-Hewitt broth (BD Bioscience, San Jose, CA, USA) 
supplemented with 0.2% yeast extract, at 37  °C under 
5% CO2. DNA was prepared from 5  mL of these cul-
tures using the QIAamp DNA minikit (Qiagen, Toronto, 
Canada) according to the manufacturer’s protocol for 
Gram-positive bacteria. The serotype of the isolates was 
determined using a multiplex PCR assay detecting CPS 
biosynthesis genes, as previously described [42]. Briefly, 
each PCR consisted of template DNA, a particular primer 
mix, and PCR master mix (Multiplex PCR Mastermic, 
Qiagen). PCR products were resolved on 2% agarose gel 
stained with SYBR safe (ThermoFisher) and visualized 
under UV light. Serotypes were determined accordingly 
to the DNA band position, as described [42]. Differen-
tiation of serotype pairs 1 and 14, as well as 2 and 1/2, 
cannot be achieved using this PCR assay. To resolve these 
pairs, we used genome-based in silico PCR, which is fur-
ther described below.

Whole‑genome sequencing and bioinformatics analysis
Sequencing libraries were prepared using Nextera XT 
kits (Illumina, San Diego, CA, USA) following the manu-
facturer’s instructions. Libraries were sequenced on an 
iSeq 100 instrument (Illumina). For approximately half of 
the isolates, libraries were sequenced as paired-end reads 
of 150 + 150 bp, while the other half were sequenced as 
paired-end reads of 300 + 300  bp. Both datasets were 
compatible for all downstream analyses, and the variabil-
ity in read lengths was solely due to the availability of rea-
gents in our laboratories.

Serotypes and MLST profiles were determined directly 
from the short-read genome data using a previously 
described in silico S. suis serotyping pipeline that uses 
read alignment to a custom database of serotype-specific 
cps locus sequences, and which can discriminate between 
serotype pairs 1 and 14, as well as 2 and 1/2, based on 
a single nucleotide polymorphism (SNP) in the gene 
cpsK [19]. In cases where low coverage prevented the 
automated determination of a serotype by the pipeline, 
we manually inspected intermediate files in the pipeline 
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output, namely the “score” file generated by the pipeline 
was manually reviewed. A serotype was then assigned if: 
1) the “score” file reported a low depth of coverage sero-
type, and it matched the PCR results or 2) the “score” file 
identified a serotype in a PCR “untypable” result. When 
manual inspection revealed a blank score file, the iso-
late was deemed to be untypable. For MLST determina-
tions, we used the PubMLST S. suis MLST database [20], 
downloaded on June 10th, 2024. Using standard nucleo-
tide BLAST [43], we also interrogated the genomes for 
the presence of the 3 classical VAGs, namely genes mrp, 
epf, and sly, as well as of 84 additional putative viru-
lence factors [34, 36]. We also examined the presence of 
26 putative zoonotic virulence factors (PZVFs), nine of 
which were included among the abovementioned set of 
84 VAGs [40]. To that end, we first performed de novo 
genome assemblies using the A5-MiSeq pipeline [44] 
and annotated the resulting contigs with Prokka [45]. 
To investigate AMR gene content, we used the read 
mapping-based tool SRST2 [46] and the Comprehensive 
Antibiotic Resistance Database (CARD) v3.0.8 [47]. Visu-
alizations were generated using the base R software ver-
sion 4.2.2 [48] and edited in Adobe Illustrator.

Phylogenetic analysis
Core genome-based phylogenetic analysis was performed 
as follows: using the Snippy algorithm [49], we first iden-
tified SNPs among the 251 S. suis isolates in our collec-
tion relative to the genome sequences of the ST1 serotype 
2 reference strain P1/7 (GenBank accession number 
NC_012925.1). For confirmation of phylogenetic find-
ings, a separate analysis was performed using the ST16 
serotype 9 strain GD-0088 (GenBank accession number 
NZ_LR738723.1) as reference. Identified SNPs were next 
reduced to the core SNPs set using the Snippy-core func-
tion [49]. Maximum likelihood phylogenetic trees were 
then constructed with FastTree 2.1.10 [50] with 1000 
bootstrap replications, and visualized and annotated 
using R [48], and the R library ggtree [51].

Results
High serotype diversity with dominance of serotypes 9 
and 2 among European S. suis isolates
To identify the serotype of the S. suis isolates, we 
used both multiplex PCR and genomic based in silico 
approaches. We identified 13 serotypes among the 251 
isolates. Consistent with previous reports from Europe 
[24], most isolates were of serotype 9 (N = 108/251, 
43.0%), followed by those of serotype 2 (N = 72/251, 
28.7%). The remaining isolates were distributed among 
serotypes 1 (N = 25) and 7 (N = 17), 4 and 1/2 (N = 5 
each), 10 (N = 4), 5 (N = 2), 3 (N = 2), 18 (N = 2), 8 (N = 2), 
16 (N = 1), and 23 (N = 1) (Figure  1). Five isolates were 

untypable. Considering isolates of serotype 2 and 1/2 
together (as these serotypes cannot be resolved by the 
multiplex PCR), there was a 100% agreement between 
results from the multiplex PCR and genomics-based 
in silico serotyping, although this required manual 
verification of in silico results for 35 isolates with low 
read depth of coverage (see Materials and methods).

Geographic variation in serotype distribution of S. suis 
isolates across Europe
Serotype 9 predominated among isolates recovered in 
France (Figure.  1), accounting for 52.2% of the isolates 
from that country (72 out of 138), followed by the Neth-
erlands with 33.9% (21 out of 62), Germany with 33.3% 
(9 out of 27), and the United Kingdom with 13.3% (2 out 
of 15). In comparison, serotype 2 isolates were recovered 
from four countries. The United Kingdom had the high-
est proportion of serotype 2 strains at 53.3% (8 out of 
15), followed by the Netherlands at 43.5% (27 out of 62), 
France at 24.6% (34 out of 138), and Germany at 14.8% (4 
out of 27).

Isolates of serotype 1 were mostly from France and the 
Netherlands, although they were also found in the United 
Kingdom, Spain, and Germany. Most serotype 7 isolates 
originated from France, Germany, and the Netherlands, 
with one isolate from Belgium. Germany and France had 
isolates of serotype 3 and 1/2, with the latter also found 
in the United Kingdom. Isolates of serotypes 4, 8, and 10 
were exclusively found in Germany, the United Kingdom, 
and the Netherlands, respectively, while France was the 
only country with isolates of serotypes 5, 16, 18, and 23.

It should be noted that Belgium, Spain, and Hungary 
had limited representation in our collection. In Belgium, 
out of five isolates, four were of serotype 9 and one of 
serotype 7; the two Spanish isolates were of serotype 1; 
and the two isolates from Hungary were untypable. Addi-
tionally, three other untypable isolates were identified: 
two from France and one from the Netherlands. Inspec-
tion of the de novo genome assemblies of these isolates 
revealed that the Hungarian isolates have lost several 
cps genes. However, remnant cps sequences appeared 
to indicate they originally possessed a cps2 locus (Addi-
tional file 2A). Similarly, manual inspection of the cps loci 
of the three other untypable isolates revealed the absence 
of several key cps genes (Additional files 2B-D).

MLST identifies dominant and several novel genotypes 
among European S. suis isolates
We next acquired MLST profiles for the S. suis isolates 
directly from the short-read genome data and identified 
34 different STs, including 28 isolates (11.2%) with 16 
novel unique allele combinations of the 7 housekeeping 
genes used in the S. suis MLST scheme (Additional file 3). 
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The allelic profiles for these novel STs (ST2753, ST2757, 
ST2760, ST2767-2769, ST2771-2775, ST2790, ST2791, 
ST2793, ST2796, and ST2798) have been deposited in 
the S. suis PubMLST database [20]. Most serotype 2 and 
serotype 9 isolates belonged to ST1 (N = 49) and ST16 
(N = 75), respectively. Serotype 2 isolates were also clas-
sified into 7 additional STs, including STs clonally related 
to ST1 such as ST2 (N = 5), ST2753 (N = 3) and ST2768 
(N = 2), as well as genetically distant ST28 (N = 11) and 
ST20 (N = 2). We observed higher genetic diversity 
among the 108 serotype 9 isolates, with 11 STs other than 
ST16 represented. These included ST16 derivatives such 
as ST1520 (N = 4), along with 3 novel ST16 derivatives: 
ST2760 (N = 2), ST2772 (N = 2), ST2773 (N = 1). Geneti-
cally unrelated serotype 9 genotypes included ST1508 
(N = 6), ST147 (N = 3), and ST819 (N = 2), which are clon-
ally related to ST14 (not detected in our study). Another 
genetically distant serotype 9 genotype, ST1521 (N = 7), 
was also identified. The remaining 6 serotype 9 isolates 
belonged to 3 novel STs ST2757 (N = 4), ST2767 (N = 1), 
and ST2774 (N = 1).

Serotype 7 isolates (N = 17) belonged to two 
genetically distantly related STs, ST29 (N = 16), and 
novel ST2771 (N = 1). Serotypes other than 7 were not 
identified in these two STs. Most serotype 1 isolates 
were ST1 (N = 23), while two others were ST1552, an 
ST1 derivative (N = 2). While the major STs were found 
in multiple countries, several other STs were country 
specific (Figure 2). The untypable isolates from Hungary 
belonged to ST28, while the two French and the Dutch 
untypable isolates belonged to novel ST2796, ST2798, an 
ST2790, respectively.

Comprehensive phylogenetic analysis of European S. suis 
isolates reveals complex genetic diversity
Core‑genome phylogenies and reference genomes
We next expanded our genetic exploration and 
constructed core genome-based phylogenies, thus 
capturing a more comprehensive extent of genomic 
diversity beyond the seven housekeeping genes used in 
the S. suis MLST scheme. To identify SNPs, we used 
the genome sequence of strain P1/7 as the reference 
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genome. P1/7 is a well-documented ST1 serotype 2 
strain extensively used in S. suis research [52]. The 
alignment of the 251 isolates against this reference 

yielded a dataset of 8,557 non-redundant core-genome 
SNPs, providing high-resolution insights into the 
genetic diversity of the isolates (Figure  3). Further 
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comparative analysis using the genome sequence of 
the ST16 serotype 9 strain GD-0088 [53], confirmed 
the tree topology, and demonstrated no significant 
deviation of the phylogenetic conclusions (Additional 
file  4). Inspection of the core-genome phylogenies 
revealed a very good agreement between genomic 
clades and MLST genotypes. In addition to several 
numerically minor clades, there were two major clades 
of isolates, one comprising ST1 strains of serotypes 1, 
2, and 1/2, and one comprising ST16 serotype 9 strains. 
However, in transitioning from traditional MLST to 
more comprehensive core-genome SNP phylogenies, 
we observed a significant enhancement in the 
resolution of genetic relationships among the isolates 
and strong signatures of geographic diversification.

Geographic signatures of subclade diversity within ST1 S. suis 
isolates
Core genome phylogenies identified multiple sub-
clades of ST1 serotype 2 isolates. With one excep-
tion, ST1 serotype 2 isolates from France, including 
the genetically closely related novel ST2753, did not 
cluster with serotype 2 strains from the Netherlands, 
while isolates from novel ST2768 were found only in 
the United Kingdom (Additional file  5). ST1 serotype 
1/2 isolates were found in a single discrete subclade 
more closely related genetically to strains of serotype 2 
than to those of serotype 1. These serotype 1/2 organ-
isms were all from Germany (Additional file  5). The 
ST1 serotype 1 isolates clustered in four distinct, but 
relatively genetically close subclades, and presented 
a strong geographical signal of diversification. For 
example, one subclade included strains from the Neth-
erlands as well as one German isolate, while 2 other 
subclades only had isolates from France. The fourth 
ST1 subclade included organisms from the United 
Kingdom, as well as two closely related ST1552 isolates 
from Spain (Additional file  5). Notably, we did not 
detect any intermixing of serotypes among the differ-
ent subclades, which may be an indication that capsu-
lar switching between serotypes 2, 1 and 1/2 isolates 
does not occur frequently among ST1 isolates.

Subclade diversity in ST28 isolates
In agreement with previous reports from North America, 
where ST28 organisms are more commonly found and 
diversity within ST28 isolates has been described [54], 
we observed multiple subclades among European ST28 
S. suis isolates (Additional file  6). The majority of the 
ST28 isolates were of serotype 2 (N = 11). The remaining 
2 isolates were of serotype 1/2, were genetically distant 
between themselves, and originated from France and 

the United Kingdom. The French isolate was genetically 
more closely related to isolates of serotype 2 from France, 
while the one from the United Kingdom was closer to, 
although relatively distantly related from, ST28 sero-
type 2 isolates from Germany (Additional file 6). We also 
found that the 2 ST28 untypable isolates from Hungary 
clustered within a subclade of serotype 2 ST28 organisms 
from France. As described above, the Hungarian isolates 
presented a truncated cps locus whose remnants suggest 
they may have originated from a serotype 2 ancestor.

Unexpected high genetic diversity among serotype 9 isolates 
and potential for adaptive advantages of a Cps9 capsule
ST16 isolates, as well as isolates of closely related deriva-
tives ST1520, ST2773 and ST2772 were all of serotype 
9. We identified among them 5 subclades comprising 
isolates from France, one of which also had organisms 
recovered in the Netherlands (Figure  3 and Additional 
file  7). Another subclade was formed solely by German 
isolates, although they originated from the same farm, 
while ST16 serotype 9 organisms from Belgium were 
closely related to two other subclades comprising Dutch 
isolates. Interestingly, the ST16 serotype 9 organisms 
all had a classical VAG profile of mrp + , epf-, sly+ (Fig-
ure  3 and the next section), and relatively good conser-
vation among the extended panel of 84 additional VAGs, 
but there were differences among the subclades for the 
presence of genes virB4 and virD4, which have been con-
nected to a S. suis type IV-like secretion system [55].

In addition to ST16 and its closely related derivatives 
(ST1520, ST2773 and ST2772), we observed that 
serotype 9 S. suis isolates also belonged to several other 
genetically distinct clades (Figure  4). These included 
ST1508 organisms from France, ST147 and ST819 
isolates from the Netherlands, and ST1521 strains from 
France. Additionally, we identified that isolates belonging 
to previously undescribed genomic backgrounds, namely 
novel ST2757 from Germany, novel STs 2767 and 2774 
from the United Kingdom, and novel ST2760 from the 
Netherlands all possessed a cps9 locus. These four novel 
genomic backgrounds are genetically relatively distant 
from each other and from all previously described 
serotype 9 genomic backgrounds (Figure 4). This diversity 
in genomic backgrounds, compared to serotypes 2 and 1, 
might indicate a more frequent occurrence of capsular 
exchanges in some genomic backgrounds and a potential 
selective advantage for a serotype 9 capsule. However, 
other cps loci may also be exchanged in these potentially 
more recombination-permissive genomic backgrounds, 
as evidenced by serotype 10 isolates of the novel ST2769, 
which clustered with several non-ST16 serotype 9 
organisms.
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Other genetic backgrounds in S. suis isolates
ST29 organisms were all of serotype 7, and they sepa-
rated into four main subclades (Additional file  8), with 
each subclade representing geographical diversification 
(organisms were from Belgium, France, Germany and 
the Netherlands, respectively). Other genetically highly 
similar organisms were ST17 serotype 4 isolates. Inter-
estingly, the non-ST28 untypable isolates were all single-
tons, and genetically distantly related to all other groups 
of isolates based on core genome-based phylogenies, 
although one of these untypables isolates, the ST2798 
from France, appeared to have shared a common ances-
tor with ST2793 serotype 18 isolates recovered in the 
same country (Figure 3).

Distribution and diversity of virulence‑associated genes 
in S. suis isolates
Screening for classical and for an extended panel of virulence 
associated genes (VAGs)
We interrogated the genome sequences for the pres-
ence of the 3 classical S. suis VAGs (genes mrp, epf, and 
sly), and found that they were present in 92.0%, 50.6%, 
and 84.5% of the isolates, respectively (Additional file 9). 
Only 3 isolates did not possess any of the 3 classical VAG 

genes, and 98.8% of all isolates (N = 248) contained at 
least one, with 35, 104, and 109 isolates possessing 1, 2, or 
all 3 classical VAGs, respectively. We identified 7 differ-
ent classical VAG profiles in our collection. In addition to 
the abovementioned mrp + , epf + , sly + profile, with 109 
isolates, we found isolates with mrp + , epf-, sly + (N = 88), 
mrp + , epf-, sly- (N = 33), and mrp-, epf + , sly + (N = 15). 
The other 3 classical VAG profiles were mrp-, epf-, sly- 
(N = 3), mrp-, epf + , sly- (N = 2), and mrp + , epf + , sly- 
(N = 1) (Additional file 9).

We next screened the genomes for the presence of 84 
additional VAGs and found that 82 of them were present 
in at least one isolate (Additional file  10). Furthermore, 
the median amount of VAGs found in strains within 
our collection was 77. There were 35 unique VAGs pre-
sent in all 251 isolates (Additional file 10). On the other 
hand, we did not identify among our isolates genes nisK 
and nisR, encoding a two-component signal-transduction 
system (TCS) first reported in Chinese S. suis ST7 sero-
type 2 strain SC84 (RefSeq NC_012924) and often found 
among ST7 serotype 2 isolates from that country [56, 57]. 
This TCS has been associated with human rather than 
with pig S. suis isolates [40]. A set of 26 PZVFs has been 
described and associated with human infections [40]. 

2760

2757

1521

2774
2767

1508

819

147

ST16 and closely related STs (N=82)

Belgium

France

Germany

Netherlands

United Kingdom

0.06

Figure 4  Inferred genetic relationships among 108 serotype 9 S. suis strains investigated in this study based on core-genome 
analysis. The maximum likelihood phylogenetic tree was constructed based on 15 934 non-redundant core-genome SNP loci identified 
relative to the genome sequence of the ST16 serotype 9 reference strain GD-0088. The tree reveals that serotype 9 isolates are distributed 
across several distinct genomic clades, including four newly discovered genotypes, highlighting complex evolutionary dynamics. These patterns 
suggest that the cps9 Cps9 capsule may confer adaptive capabilities, although further research is needed to confirm such speculation. The 
tree is color-coded to indicate the country of origin for each strain, showcasing the geographical distribution across Belgium, France, Germany, 
the Netherlands, and the United Kingdom. The clade comprising ST16 organisms along with closely related STs 1520, 2772, and 2773 has been 
collapsed for simplicity, focusing the analysis on broader genomic diversity within serotype 9.
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Of these, nine were included in our initial subset of 84 
virulence-associated genes (VAGs) due to their broader 
relevance to virulence across different host species and 
were thus screened as part of our primary analysis. The 
remaining 17 PZVFs, which might be  more specifically 
associated with zoonotic transmission, were screened 
separately. Data for these additional 17 PZVFs is pre-
sented in Additional file 11.

Serotype and sequence type‑specific distribution of virulence 
associated genes
Isolates of serotypes 1, 1/2, and 2 clustering in the phy-
logenetic group comprising ST1 and derivatives such as 
ST2, closely related ST1552, ST2753, and ST2768, had 
the highest number of VAGs (79 out of 87 including the 
classical VAGs, Figure 3, and Additional files 9 and 10). 
In more detail, all isolates were: mrp + , epf + , sly + , and 
only lacked, in addition to nisKR, the genes virB4, virD4, 
salK, salR, srtG, and SSUST3_0534/ABC. Furthermore, 
isolates of this group exhibited the least VAG content 
diversity compared to other major phylogenetic groups.

In contrast to the ST1 cluster, the cluster containing 
ST28 isolates (of serotypes 1/2 and 2, as well as 2 untypa-
ble isolates), and  the cluster of ST29 of serotype 7 were 
characterized by a classical VAG profile of mrp + , epf-, 
sly-, and by fewer additional VAGs relative to the ST1 
group. The extended screening identified that within 
each of these groups, isolates had highly consistent pat-
terns of VAG presence. However, there were differences 
in extended VAG content between ST28 and ST29 iso-
lates (N = 5; rgg, virB4, virD4, neuB, and srtG) (Additional 
files 9 and 10). The divergent ST2790 untypable isolate 
NSUI00477 from the Netherlands had the lowest amount 
of VAGs (41 out of 87, 47.1%).

Among the 108 serotype 9 isolates in our collection, 
4 different classical VAG profiles were found. Isolates 
of serotype 9 belonging to ST16, ST1520, ST2760 and 
ST2767 (N = 85, 78.7%) had an mrp + , epf-, sly + pro-
file. Serotype 9 isolates belonging to ST147, ST819, and 
ST1508 (N = 11, 10.2%) had an mrp-, epf + , sly + pro-
file, while ST1521 and novel ST2757 serotype 9 isolates 
(N = 11, 10.2%) possessed all 3 classical VAGs mrp + , 
epf + , sly + . One serotype 9 isolate, belonging to novel 
ST2774, did not possess any of the 3 classical VAGs. Out 
of all 87 putative VAGs, 58 VAGs were present in all sero-
type 9 strains, while 5 VAGs (neuB, nadR, srtG, nisK, and 
nisR) were absent from all serotype 9 isolates (Additional 
files 9 and 10). The extended VAG content among the 108 
serotype 9 strains varied significantly, with up to 11 gene 
differences. However, there was less variation among the 
serotype 9 isolates belonging to ST16 and close deriva-
tives, which differed in VAG content by 3 or fewer VAGs. 
In this subgroup, 68 out of 87 VAGs were present in all 

strains and 14 out of 87 VAGs were consistently absent 
(Additional files 9 and 10).

Prevalence and distribution of antimicrobial resistance 
genes in European S. suis
We identified a total of 16 different AMR genes poten-
tially conferring AMR resistance in our S. suis isolate 
collection (Additional file  1 and Figure  3). 214 strains 
(85.3%) possessed at least 1 AMR gene, whereas the 
remaining 37 strains (14.7%) did not possess any. Most 
isolates (N = 129, 51.4%) had 2 AMR genes, while 49 
(19.5%) isolates had only 1 AMR gene. Isolates with 3 or 
more AMR genes represented 14.3% (N = 36) of the col-
lection. The highest number of AMR genes found in a 
single isolate was 6 (tetO, ermB, aph3, ant6, lnuB, lsaE) 
in an ST2771 serotype 7 organism recovered in Belgium.

Two AMR genes, tetO (N = 124, 49.4%) and ermB 
(N = 163, 64.9%), encoding resistance to tetracycline, 
and to streptogramin (A & B), macrolide and lincosa-
mide antimicrobial drug classes, respectively, were the 
most frequently observed. There were 108 strains (43.0%) 
that possessed both genes. Gene tetW was found in 61 
isolates (24.3%). In addition to tetO and tetW, we also 
observed genes tet40 and tetM in several isolates (Addi-
tional file  1). In total, 190 isolates (75.7%) possessed at 
least one gene potentially conferring resistance to tetra-
cycline. Eight AMR genes (lnuC, tet40, mel, dfrG, aac6, 
vatE, sul2, tetM) were present in less than 5% of isolates 
in the collection (Additional 1).

Among the 108 serotype 9 isolates, 13 (12.0%) did not 
possess any AMR genes (Table 1). A total of 58 serotype 
9 isolates (53.7%) had gene tetW, accounting for 95.1% 
of the total 61 isolates in our collection having this gene. 
Additionally, of the 163 isolates carrying the ermB gene, 
66 were serotype 9 isolates, which represents 40.5% of the 
isolates with this gene and 61.1% of all serotype 9 isolates 
tested. Interestingly, no serotype 9 isolates possessed 
genes tet40, aac6, and sul2. In the subgroup of ST16 sero-
type 9, only 7 out of the total 16 AMR genes identified 
in the full collection were detected. In addition to the 
previously mentioned three genes, genes sat, ant6, lnuB, 
lsaE, and tetM were absent from the genomes of ST16 
serotype 9 strains. Thus, compared to the broader group 
of serotype 9 isolates, ST16 serotype 9 isolates had lower 
AMR gene diversity.

Among the 72 serotype 2 isolates, 8 did not possess 
any AMR genes (Table  1). However, as a population 
the serotype 2 organisms had 11 out of the 16 AMR 
genes detected in the full collection (genes tet40, lnuC, 
vatE, mel, and sul2 were absent from all isolates in this 
group, Additional file 1). Notably, 47 serotype 2 isolates 
possessed gene tetO (65.3% of the serotype 2 isolates, 
and 37.9% of all isolates with this gene). The diversity 
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of AMR gene presence in the group of ST1 serotype 2 
organisms was lower compared to all serotype 2 isolates. 
Indeed, only 6 of the 16 total AMR genes were detected 
(i.e., in addition to the three above mentioned AMR 
genes, we did not detect genes tetW, lnuB, lsaE, dfrG, and 
aac6). These results seem to align with previous reports 
describing a paucity of AMR-carrying mobile genetic 
elements among ST1 S. suis in comparison to serotype 
2 strains of other genomic backgrounds [32, 58–60]. 
Interestingly, among the 25 ST1 serotype 1 isolates, we 
only identified 2 AMR genes (tetO and ermB), but 19 
serotype 1 isolates (76.0%) carried both tetO and ermB 
genes. All serotype 7 isolates (N = 17) carried at least 2 
AMR genes: 13 isolates possessed genes tetO and ermB, 
2 isolates possessed genes aph3, lnuB and lsaE, 1 isolate 
possessed genes ermB and dfrG, and 1 isolate possessed 
6 AMR genes: tetO, ermB, aph3, ant6, lnuB, and lsaE. 
Isolates of serotypes 5 and 18 did not possess any AMR 
genes, although we note that these serotypes were 
represented by 4 isolates only, accounting for only 1.6% 
of the collection.

Discussion
Genomic insights and pathogen diversity
We report here considerable diversity in serotypes and 
genomic backgrounds among S. suis strains recovered 
from diseased pigs in Europe. The wealth of the data 
permitted us to identify several novel derivatives 
of previously reported STs, as well as new genomic 
backgrounds. Our findings underscore the superior 
discriminatory power of genomics for detecting subtle 

genetic variations that are important for tracking 
pathogen evolution and epidemiology [12, 13, 61, 62].

Core-genome single SNP analysis was key in highlight-
ing nuanced interactions within phylogenetic clusters, 
revealing a complexity in genetic interactions not previ-
ously fully appreciated. For example, the identification 
of these novel STs and genomic backgrounds among our 
isolate collection reinforces previous reports describ-
ing the ongoing genetic evolution within the S. suis 
population [63], and suggests a dynamic S. suis genetic 
landscape where new variants continually emerge, pos-
sibly as a response to selective pressures such as host 
immune responses (due to natural infections or autog-
enous vaccines) or antibiotic treatments. This genetic 
fluidity underscores the adaptability of S. suis, reinforc-
ing the need for continuous surveillance using advanced 
molecular tools [15–17, 62]. Furthermore, we also clearly 
show regional differences in genetic evolution. Moni-
toring geographical variation in STs and serotypes can 
inform targeted health interventions in the swine indus-
try and enhance understanding of S. suis transmission 
dynamics. Such monitoring also supports broader public 
health efforts, defined here to include the management 
of zoonotic risks and the health of animal populations, 
which are integral to community health strategies [11, 64, 
65].

One of our findings was a potential for genetic 
“promiscuity” among serotype 9 isolates, which were 
represented in several genetically distantly related 
genomic backgrounds. This may imply a more fre-
quent occurrence of capsular switching and genetic 

Table 1  Antimicrobial resistance (AMR) gene content among the Streptococcus suis isolates used in this study 

a UT: Untypable isolate.

Serotype Number 
of isolates

AMR genes

tetO tetM tetW tet40 ermB lnuB lnuC aph3 ant6 aac6 sat dfrG sul2 vatE mel lsaE

1 25 19 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0

1/2 5 5 0 0 0 4 0 0 0 3 0 0 0 0 0 0 0

2 72 47 3 2 0 47 3 0 4 8 2 4 2 0 0 0 3

3 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 17 14 0 0 0 15 3 0 3 1 0 0 1 0 0 0 3

8 2 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

9 108 30 1 58 0 66 5 1 5 5 0 5 4 0 3 1 5

10 4 4 0 0 0 4 0 0 4 4 0 4 0 0 0 0 0

16 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0

18 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

UTa 5 2 0 0 2 4 2 0 2 3 0 1 0 0 0 1 2

Total 251 124 4 61 2 163 13 1 19 25 2 15 8 1 3 2 13
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recombination and a potential capacity of serotype 9 
capsules to provide an adaptive mechanism that may 
confer survival advantages under various environmen-
tal pressures, such as immune evasion or antimicro-
bial exposure [11, 16, 66]. This finding was in contrast 
with our results for serotypes 1, 2, and 1/2, which gen-
erally exhibited more genetic stability and uniformity, 
indicating a potentially more conserved evolutionary 
path. However, the recent emergence of serotype 2 
ST20 also illustrates that evolutionary diversification, 
while  perhaps less pronounced, does occur in these 
typically more stable serotypes. It has been suggested 
in previous work that ST20 organisms may have origi-
nated from ST16 strains [67]. Our data confirms that 
ST20 and ST16 organisms are relatively closely related 
genetically. However, because ST20 isolates have pat-
terns of SNP distribution similar to those observed for 
ST147 and ST819 serotype 9 isolates when compared 
against an ST16 genome (Additional file  12), our data 
also suggest that it is unlikely that recombinant ST20 
serotype 2 organisms have originated directly from an 
ST16 ancestor by a single recombination event involv-
ing capsular switching. This complex adaptive land-
scape may reflect the varying evolutionary pressures 
and strategies employed by different serotypes within 
the species [12, 13, 66]. It is also important to mention 
that the diversity we discovered within serotype 9 poses 
challenges for molecular typing and epidemiological 
tracking. Traditional serotyping and some molecular 
methods cannot fully capture the genetic diversity of 
S. suis, especially when capsular gene swapping may 
be involved. Advanced genomic tools can provide the 
resolution necessary to accurately characterize these 
dynamic genetic changes, offering insights into the 
evolutionary pressures shaping the S. suis development 
[62, 68]. Our study also identified a subset of S. suis iso-
lates that were untypable; some appear to have lost the 
ability to express a capsule, while others may represent 
novel capsular types. Since these isolates were recov-
ered from diseased animals, further characterization of 
these untypable organisms might be clinically signifi-
cant and important for enhancing diagnostics.

The S. suis genomic diversity revealed through our 
study further highlights the need for innovative vaccine 
strategies for control of this organism. Traditional vac-
cines targeting specific serotypes may not suffice due 
to the emergence of genetically diverse strains and the 
apparent notable adaptability of serotypes like serotype 
9 [69, 70]. Thus, our findings advocate for next-genera-
tion vaccines that target more conserved elements across 
the species or are adaptable to evolving genetic variants. 
Additionally, leveraging genomic insights can enhance 
autovaccine formulations by ensuring they are tailored to 

combat the most prevalent and virulent strains, provid-
ing a targeted response to local disease challenges [3, 7, 
19]. By integrating genomic data into vaccine design, it 
may be possible to improve the efficacy of autovaccines 
[71], potentially reducing the incidence of S. suis out-
breaks and mitigating their impact on swine health and 
the associated economic consequences.

Virulence factor analysis
VAG content analysis can provide insights into the capac-
ity of an isolate to cause disease [72]. The classical VAGs 
(epf, mrp, and sly) are factors with proven or poten-
tial roles in the pathogenesis of the S. suis infection: EF, 
encoded by epf, has been postulated to enhance the bac-
terial survival in host tissues, MRP has been associated to 
immune evasion, and suilysin shown to contribute to sep-
ticemia and meningitis by lysing host cells [34, 35]. The 
consistent profiles of these genes across different sero-
types and STs underscores their role as markers of viru-
lence in S. suis [1]. In addition, our study also revealed 
a broad distribution of additional putative VAGs that 
might influence the S. suis fitness and virulence in more 
nuanced ways. For instance, genes putatively involved 
in adhesion, toxin production, and immune modulation 
were variably present across isolates, further stressing 
that different strains of S. suis might be equipped with 
unique arsenals for interaction and colonization of the 
host [36]. This variation could explain reports on dif-
ferential pathogenicity among strains and their varying 
ability to cause outbreaks of differing severity in swine 
populations [34, 35]. Moreover, the serotype-specific var-
iability in VAG profiles highlighted in our study indicates 
that virulence traits may be influenced by the genetic 
context of the serotype. For example, the genetic “prom-
iscuity” of serotype 9, as well as the potential for capsular 
switching in S. suis might lead to combinations of VAGs 
that confer advantages in particular environmental or 
host contexts, potentially complicating vaccine develop-
ment and therapeutic interventions aimed at controlling 
infections [1, 13]. We extended our analysis to examine 
the presence of 26 additional PZVFs across isolates in 
our collection. We found that the genes encoding all 26 
PZVFs were variably present across the isolates but with 
consistent patterns across different genotypes suggesting 
PZVFs could serve as markers for zoonotic pathogenesis 
and virulence in S. suis isolates, as previously suggested 
[40].

Our findings also stress the importance of using 
advanced genomic tools to map the VAG landscape com-
prehensively. Traditional phenotypic assays and limited 
gene panels may not capture the full spectrum of viru-
lence factors, especially those newly recognized or less 
studied. Genomics enables the identification of novel 
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VAGs and provides insights into their co-occurrence 
patterns, which are crucial for understanding how com-
binations of virulence factors may interact to enhance 
pathogenicity [72, 73].

AMR profiles and public health implications
The widespread resistance to tetracyclines, macrolides, 
and lincosamides across various serotypes and sequence 
types shown in our study is in line with previous reports 
[21, 26–28, 31, 32, 58, 59, 65, 74, 75]. While these anti-
microbials are not used for the treatment of S. suis, they 
are routinely used to treat other bacterial infections 
affecting swine, such as respiratory diseases caused by 
Mycoplasma hyopneumoniae and Actinobacillus pleuro-
pneumoniae, as well as gastrointestinal disorders linked 
to Lawsonia intracellularis [76, 77]. The routine use of 
these drugs could potentially influence the transmission 
of resistance traits among bacterial populations. This 
underlines the need for ongoing surveillance and respon-
sible management of antibiotic usage to mitigate broader 
impacts on antimicrobial resistance dissemination. Our 
data show that there were not consistent correlations 
between AMR profiles and specific genetic backgrounds, 
suggesting that resistance traits disseminate across 
diverse S. suis populations via horizontal gene transfer. 
The transmission of S. suis from swine to humans, pri-
marily affecting those in close contact with pigs or pork 
products, can lead to serious infections, such as meningi-
tis and septicemia [1, 7]. The overlap in antimicrobial use 
between humans and swine amplifies this risk, as resist-
ance mechanisms developed in swine can readily trans-
fer to human pathogens, a scenario of significant concern 
under the One Health approach [26]. While this may 
not readily apply to Europe, the implications for pub-
lic health are particularly critical in regions of the world 
where regulatory oversight of antimicrobial use in agri-
culture is less stringent. In such settings, the risk of AMR 
gene exchange between S. suis and other human patho-
gens increases, and could potentially lead to outbreaks of 
drug-resistant infections that are difficult to control [28, 
29]. This genetic mobility necessitates vigilant monitor-
ing and regulation of antibiotic use in swine production 
to prevent further development and spread of resistance 
[27, 31].

Methodological considerations and study limitations
We used a convenience sample of 251 isolates collected 
across seven European countries, providing a compre-
hensive overview of S. suis diversity in terms of sero-
types, AMR profiles, and virulence factors. The strategic 
selection of these isolates, many of which were either 
used or considered for inclusion in autovaccine formula-
tions, ensures that our findings are directly relevant and 

reflective of the strains that are most significant for dis-
ease management in commercial swine production. This 
aspect of our sampling strategy lends a practical utility to 
our dataset, as it mirrors the types of strains that pose the 
greatest concern in field conditions [1]. The geographical 
and temporal breadth of the sample collection, spanning 
from 2012 to 2020, captures variability in S. suis popula-
tions and the potential impact of varying farm manage-
ment practices and antibiotic usage patterns [11, 31].

While the convenience sample offers practical insights, 
it may also introduce biases that could affect the gener-
alizability of our findings [78]. However, the consistency 
and similarity observed across diverse isolates suggest 
that our results offer a credible reflection of the wider S. 
suis population dynamics within European swine herds. 
To further validate and extend our observations, future 
studies could employ random sampling and expand the 
geographic and host species scope to include more coun-
tries and potentially other susceptible European animal 
populations such as wild boars, which have been found to 
sometimes carry S. suis strains of similar genotypes and 
serotypes as the ones described here [58, 79, 80]. Such 
studies would enrich our understanding of S. suis epide-
miology and control strategies, reinforcing the relevance 
of our current findings and facilitating the development 
of more targeted interventions.

Our study has revealed extensive genomic diversity in 
S. suis across Europe, highlighting the adaptability and 
evolutionary dynamics of this pathogen. Key findings 
include the notable genetic variability within serotype 
9 and its implications for disease management and vac-
cine development. This underscores the importance of 
employing advanced genomic methodologies for ongoing 
surveillance and the creation of adaptable vaccine strate-
gies that can respond to this diversity. Emphasizing a One 
Health approach, we advocate for integrated strategies 
that consider the interconnected health impacts across 
human, animal, and environmental spheres to effectively 
manage and mitigate S. suis infections. This approach is 
essential not only for enhancing animal health but also 
for protecting public health, given the zoonotic potential 
of S. suis.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13567-​024-​01366-y.

 Additional file 1. 251 Streptococcus suis isolates used in this study. 
This file contains a table of 251 Streptococcus suis strains used for analyses 
in this study, including information regarding country of isolation, 
genome information, serotype and STs, presences of AMR genes, and 
Biosample accession numbers. 

Additional file 2. Comparative architecture of cps loci in untypable 
Streptococcus suis isolates.  Illustrated is the genetic organization of 
the cps loci of the five S. suis untypable isolates, including a comparison 
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to appropriate reference cps loci sequences. Percentage identity to 
reference sequences is indicated. A) ST28 isolates NSUI00643 and 
NSUI00644, both recovered in Hungary, possessed some but lacked 
several key cps genes found in the reference ST28 serotype 2 strain 
NSUI002 (GenBank accession number CP011419.1). B) ST2796 isolate 
NSUI00607, recovered in France, possessed some but lacked several 
key cps genes found in serotype 31 strain 92-4172 (GenBank accession 
number AB737835.1). C) ST2790 isolate NSUI00477, recovered in 
the Netherlands, possessed some but lacked several key cps genes 
found in reference serotype 1 strain 5428 (GenBank accession number 
JF273644.1). D) ST2798 isolate NSUI00633, recovered in France, 
possessed some but lacked several key cps genes found in reference 
serotype 28 strain 89-590 (GenBank accession number AB737832.1). 

Additional file 3. STs identified among the Streptococcus suis 
isolates used in this study. This file contains a table of STs distribution 
of 251 S. suis isolates used in this study along with their respective 
housekeeping gene allele number. 

Additional file 4. Phylogenetic relationships based on core-
genome single-nucleotide polymorphisms (SNPs) and genomic 
traits of the 251 Streptococcus suis isolates using a different 
reference genome. This figure presents a maximum-likelihood 
phylogenetic tree (left panel), constructed using 8,611 non-redundant 
core-genome SNP loci identified relative to the genome sequence of 
the ST16 serotype 9 reference strain GD-0088. This analysis confirms 
the findings depicted in Figure 3, using a different reference to provide 
comparative insights. The tree highlights several distinct clades, 
emphasizing the genetic diversity among the isolates. For reference, 
the serotype of each isolate, along with the genotypes determined 
by multilocus sequence typing (MLST), are annotated along the tree, 
showing their association with specific genomic clades. The right 
panel depicts the presence (in purple) or absence (in light blue) of 
antimicrobial resistance (AMR) genes and virulence-associated genes 
(VAGs), as determined from the whole-genome sequences of each 
isolate. “UT” denotes an untypable isolate. 

Additional file 5.  Inferred genetic relationships based on 
core-genome analysis among the 82 Streptococcus suis isolates 
investigated in this study belonging to sequence type (ST) 1 
and closely related STs. The maximum likelihood phylogenetic 
tree was constructed from 6,272 non-redundant core-genome SNP 
loci identified relative to the genome sequence of the ST1 serotype 
2 reference strain P1/7. Each isolate is uniquely identified (e.g., 
NSUI00470) and annotated with its serotype and ST. The tree includes 
isolates from France, Germany, the Netherlands, Spain, and the United 
Kingdom, with each country represented by a specific color. This 
illustrates the geographic distribution of the strains and highlights that 
patterns of strain diversification have a strong geographic signature. 

Additional file 6. Inferred genetic relationships based on 
core-genome analysis among the 15 Streptococcus suis isolates 
belonging to sequence type 28 investigated in this study. The 
maximum likelihood phylogenetic tree was constructed from 8906 
non-redundant core-genome SNP loci identified relative to the 
genome sequence of the ST28 serotype 2 reference strain NSUI002 
(GenBank Accession number CP011419.1). Each isolate is uniquely 
identified (e.g., NSUI00524) and annotated with its 24 serotype and 
ST. The tree includes isolates from France, Germany, Hungary, and the 
United Kingdom, with each country represented by a specific color. 
“UT” denotes an untypable. 

Additional file 7. Inferred genetic relationships based on 
core-genome analysis among the 75 Streptococcus suis isolates 
belonging to sequence type 16 investigated in this study. The 
maximum likelihood phylogenetic tree was constructed from 8906 
non-redundant core-genome SNP loci identified relative to the 
genome sequence of the ST16 serotype 9 reference strain GD-0088. 
Each isolate is uniquely identified (e.g., NSUI00524) and annotated with 
its serotype and ST. The tree includes isolates from Belgium, France, 
Germany, and the Netherlands, with each country represented by a 
specific color. 

Additional file 8. Inferred genetic relationships based on core-
genome analysis among the 16 S. suis isolates belonging to 
sequence type 29 investigated in this study. The maximum likelihood 
phylogenetic tree was constructed from 645 non-redundant core-
genome SNP loci identified relative to the genome sequence of the ST29 
serotype 7 reference strain 13-00283-02 (GenBank Accession number 
NZ_CP058741.1). Each isolate is uniquely identified (e.g., NSUI00528) 
and annotated with its serotype and ST. The tree includes isolates from 
France, Germany, Hungary, and the United Kingdom, with each country 
represented by a specific color. 

Additional file 9. Distribution of classical virulence-associated genes 
(VAGs) across Streptococcus suis serotypes. This file contains a table of 
the association of S. suis serotypes and the identified classical virulence-
associated gene (mrp, epf, sly) profiles. 

Additional file 10. Detection of virulence-associated genes (VAGs) 
in the Streptococcus suis isolates used in this study. This file contains 
a list of 80+ VAGs screened in each S. suis strains in this study, including 
differential presences in different sequence types. 

Additional file 11. Detection   of 17 additional putative zoonotic 
virulence factors (PZVFs) among 251 Streptococcus suis isolates. 
This figure presents a maximum-likelihood phylogenetic tree (left panel), 
constructed using 8,558 non-redundant core-genome SNP loci identified 
relative to the genome sequence of the ST1 serotype 2 reference strain 
P1/7. The right panel depicts general strain information (serotype, clonal 
complex, country; 3 left-most columns), and PZVFs presence (black) or 
absence (white) as determined from the whole-genome sequences of 
each isolate. Isolates of serotypes 1, 2 and 1/2 belonging to CC1 had more 
PZVFs than other serotypes. 

Additional file 12. Genomic synteny of Streptococcus suis ST20, 
ST147, and ST819 strains in comparison to ST16 serotype 9 reference 
strain GD-0088. Coverage data (innermost circles) and single-nucleotide 
polymorphisms (SNPs, outermost circles) for strains NSUI00645 (ST20), 
NSUI00474 (ST147) and NSUI00682 (ST819) are plotted against the ST16 
serotype 9 reference strain GD-0088. The similarity in SNP distribution 
patterns across several areas of the genome between the ST20, the ST147 
and the ST819 isolates does not support the hypothesis that ST20 strains 
are derived directly from an ST16 organism. There were 13934, 16601, 
16113 SNPs for strains NSUI00645, NSUI00474, and NSUI00682, respec-
tively, relative to the reference strains. The position of the cps9 locus in the 
reference genome is provided as a reference.
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