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Abstract 

Honey bees are rapidly declining, which poses a significant threat to our environment and agriculture industry. These 
vital insects face a disease complex believed to be caused by a combination of parasites, viruses, pesticides, and nutri-
tional deficiencies. However, the real aetiology is still enigmatic. Due to the conventional analysis methods, we still 
lack complete insights into the honey bee virome and the presence of pathogenic bacteria. To fill this knowledge 
gap, we employed third-generation nanopore metagenomic sequencing on honey bee haemolymph to moni-
tor the presence of pathogens over almost a year. This study provides valuable insights into the changes in bacte-
rial and viral loads within honey bee colonies. We identified different pathogens in the honey bee haemolymph, 
which are not included in honey bee screenings. These pathogens comprise the Apis mellifera filamentous virus, 
Apis rhabdoviruses, and various bacteria such as Frischella sp. and Arsenophonus sp. Furthermore, a sharp contrast 
was observed between young and old bees. Our research proposes that transgenerational immune priming may play 
a role in shaping infection patterns in honey bees. We observed a significant increase in pathogen loads in the spring, 
followed by a notable decrease in pathogen presence during the summer and autumn months. However, certain 
pathogens seem to be able to evade this priming effect, making them particularly intriguing as potential factors 
contributing to mortality. In the future, we aim to expand our research on honey bee transgenerational immune 
priming and investigate its potential in natural settings. This knowledge will ultimately enhance honey bee health 
and decrease colony mortality.
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Introduction
Honey bee populations are declining at a concerning 
rate. This decline has been consistently reported over the 
last two decades, yet a definitive solution has yet to be 
identified [1]. Pollinators play a critically important role 
not only in maintaining the well-being of the environ-
ment but also in sustaining the agriculture industry [2]. 
Honey bees are among the most significant pollinators 
due to their large colony size and ease of management. 
Furthermore, they offer a range of products, including 
honey, pollen, wax for food processing, propolis for use 
in food technology and medicine, venom in medicine, 
and royal jelly as a dietary supplement and food ingredi-
ent [3]. Alarmingly, these crucial insects are under threat 
due to a disease complex believed to be caused by a com-
bination of parasites, viruses, pesticides, and nutritional 
deficiencies [4]. Despite ongoing research, many aspects 
of this mortality complex remain unknown, primarily for 
two reasons.

First, the disease complex is intricate because many 
stress factors work synergistically, and clear symptoms 
such as hive death may not appear until long after the 
exposure period [5]. A key reason for winter mortality 
is that the hive is too weak at the start of winter, either 
because of the lowered number of bees or their short life 
span. This reduced number cannot be compensated by 
more bees being born, as only a small number are born 
during winter due to the low environmental tempera-
tures. Nevertheless, when the hive eventually dies, it is 
not certain that any of the abovementioned stress fac-
tors still exist. The fate of the hive might have been deter-
mined months earlier [6]. For this reason, information on 
viral infection over a longer period is crucial. Studies fre-
quently only sample at one particular time point, so viral 
kinetics and their importance in the honey bee mortality 
complex cannot be determined [7, 8].

Second, the conventional methods of analysis are 
either outdated or suboptimal. For instance, (RT-)PCR 
has historically determined viral prevalence. PCR can 
only detect predetermined or known viruses, so some 
important viruses can be missed [7, 9–11]. However, 
recent technical developments, namely third-generation 
sequencing, have solved this problem. Metagenomic 
long-read sequencing approaches enable the ad random 
detection of all viruses in a sample. This technique has 
already been proven vital in identifying new potential 
contributors to complex diseases in pigs, cattle, horses, 
and other animals [12–18]. But, it is essential to carefully 
select the sample type.

Previous studies typically used whole bees, which can 
lead to interference from unrelated viruses, such as plant 
viruses that may be present in the bee’s gut and/or on 
its surface [10]. The use of whole bees is also part of the 

reason why information on the role of honey bee patho-
genic bacteria is scarce. For example, there are only five 
known pathogenic bacteria in honey bees, which is low 
compared to other animals such as pigs and cattle [19]. 
Analysing whole bees makes it difficult to separate bacte-
rial infection from facultative pathogenic or commensal 
gut bacteria [20].

In addition to the above, other factors need to be con-
sidered. For instance, adult honey bees have specific tasks 
depending on their age and can be divided into two dis-
tinct groups: nurses and foragers. Honey bees that are 
0 to 2  weeks old are referred to as nurses and perform 
in-hive tasks, including caring for the brood. Those 2 to 
approximately 4 weeks old are considered foragers and fly 
out of the hive to collect food and water [21]. Moreover, 
there is a unique group of honey bees known as winter 
bees. These bees start "winter cluster formation", which 
is usually from October till February, depending on the 
weather. Few or no new honey bees are born during this 
period, and the hive temperature drops. Winter bees have 
a longer lifespan of about four months instead of the 
usual four weeks, as they play a critical role in caring for 
the upcoming generation in the following spring. Each of 
these types of bees possesses a unique immune system 
capacity that can affect their susceptibility to pathogens, 
resulting in different viral and bacterial loads [15, 22–24]. 
Winter bees are often overlooked in studies because 
opening a hive during this season can be harmful to the 
colony [8]. As a result, the viruses and bacteria present 
in honey bee hives may not be fully understood, leading 
to a limited understanding of their impact on honey bee 
mortality.

This study presents a contemporary approach to 
researching honey bee colony mortality to address the 
research gaps identified in previous studies. We fol-
lowed-up a honey bee apiary to visualise pathogen cir-
culation over time. We sampled honey bees of different 
ages (from one day old to foragers) to decrease the risk of 
missing pathogens and to visualise pathogen evolution in 
certain age groups. We used third-generation nanopore 
metagenomic sequencing of honey bee haemolymph col-
lected by a newly presented method. This allowed us to 
identify all pathogens (viruses and bacteria) without con-
tamination from the gut microbiome. To our knowledge, 
this is the first study in which bacterial and viral loads in 
the honey bee haemolymph are longitudinally followed 
up for almost a year.

Materials and methods
Honey bee collection
A schematic overview of the collected honey bees, hive 
treatments and disease symptoms can be found in Fig-
ure  1. Four beehives at a single apiary were monitored 
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from April 2022 until February 2023. The apiary was situ-
ated at Ghent University in Belgium. The sampled bees 
were a hybrid of Apis mellifera carnica, Apis mellifera 
Buckfast, and Apis mellifera mellifera. During each visit, 
three one-day-old nurses were sampled per hive on the 
brood frames. We opted for taking one-day-old nurses as 
they can be easily distinguished from older bees—such as 
forager bees who sometimes walk on the brood frames—
by their velvety appearance. Three additional foragers per 
hive were collected at the hive entrance.

During the honey bee production season, samples were 
taken every two weeks, with the exception of August 
and September. From June 14, 2022, to August 1, 2022, 
the queens were confined for brood interruption, so no 
young bees were present. By the end of this period, no 
more brood was present, and an oxalic acid nebulisation 
was performed to kill the Varroa mites on the adult bees. 
Due to bad weather in September, only foragers were 
sampled. Approximately half of the apiary was moved to 
another location between the first and second sampling 
of May. Due to unforeseen circumstances, the original 
four hives could not be sampled further, so four other 
hives from the same apiary in the new location were cho-
sen for sample collection.

The lifespan of a summer honey bee is approximately 
four weeks. By sampling nurses and foragers every two 
weeks, we could profile pathogens in relation to the 
bee’s age. We only sampled once in October to avoid dis-
turbing the bees while they formed their winter cluster. 
Only three foragers per hive were taken in November 
for the same reason. One sample was taken in Decem-
ber, and six winter bees per hive were collected. This was 
done during the winter Varroa treatment (oxalic acid 

drip) when the hives had to be opened, so no additional 
stress was put on the colonies. One hive died before 
this procedure, after which ten dead bees were col-
lected for further analysis. In February, six bees per hive 
were sampled at the opening on top of the hive. Again, 
four hives were sampled, including the three surviving 
hives and one other hive on the apiary. The samplings 
took place on 12/04/2022, 27/04/2022, 10/05/2022, 
25/05/2022, 13/06/2022, 28/06/2022, 13/07/2022, 
26/07/2022, 08/08/2022 (only foragers), 25/08/2022 (for-
agers), 29/08/2022 (nurses), 27/09/2022 (only foragers), 
04/10/2022 (nurses), 14/10/2022 (foragers), 08/11/2022 
(foragers), 20/12/2022 (dead winter bees), 21/12/2022 
(winter bees) and 27/02/2023 (winter bees).

Haemolymph collection
The honey bees were sedated for 30  min on ice. Subse-
quently, the bees were washed with ultrapure water and 
alcohol to rinse off pollen and sterilise the surface. After 
drying, the haemolymph was collected using a newly 
established technique in a class 2 biosafety cabinet. The 
abdomen was punctured between the second and third 
tergit with a 24G needle. A sterile anticoagulant (0.5 mL, 
54  mM EDTA-PBS, autoclaved) was injected into the 
thorax using a 30G needle mounted on a 0.5 mL syringe. 
The anticoagulant haemolymph mixture exited the bee 
through the previously made puncture wound, result-
ing in 500 µL in total per bee. Anticoagulant was used to 
minimise cellular reaction with potential loss of patho-
gens. Fifty µL of the 500 µL haemolymph mixture from 
each bee was diluted in 50 µL sterile PBS. Fifty µL of this 
dilution was pooled per age and sequenced using third-
generation nanopore sequencing. The other 50  µL was 
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Figure 1 Timeline honey bee collection. The bars represent two-week periods. The full bars represent periods during which samples were taken; 
the dotted bars represent periods when no samples were collected.
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preserved at −70 °C. The remaining 450 µL of the original 
haemolymph mixture was used for other research pur-
poses. After the mortality of one hive in December, we 
analysed the stored frozen haemolymph samples from 
November separately to see if a different pathogen load 
could be seen between the surviving hives and the dead 
hive. The ten dead bees were flushed in the same man-
ner as the live bees. These samples were also pooled and 
sequenced using third-generation nanopore sequencing.

Third‑generation nanopore metagenomic sequencing
Nanopore metagenomics sequencing was conducted at 
the PathoSense laboratory, following previously estab-
lished protocols [12, 18, 25]. These protocols were sub-
jected to quality assessments regarding their sensitivity 
compared to qPCR [18, 25]. Additionally, the PathoSense 
laboratory performs frequent validation assays using 
mock communities. In brief, honey bee haemolymph 
samples underwent enrichment via filtration using a 
0.8  µm polyethersulfone filter (Vivaclear, Sartorius) and 
centrifugation at 2000 × g for 5 min to remove cells and 
debris. A spike-in virus was introduced to ensure qual-
ity control and semi-quantification in downstream data 
analysis. The filtrates obtained were subjected to nucle-
ase treatment to remove any free nucleic acids and only 
identify clinically relevant species, excluding any free 
non-infectious nucleic acids. Subsequently, reverse tran-
scription and ad random amplification were performed, 
as described earlier [12, 25]. The obtained (c)DNA was 
subjected to rapid library preparation using the SQK-
RBK096 library preparation kit (ONT), allowing mul-
tiplexing of up to 96 samples per run. No more than 24 
pooled haemolymph samples were analysed per run for 
sequencing throughput. Sequencing was performed on 
R9.4.1 flow cells (ONT) on a GridION device, facilitating 
real-time data acquisition, super accurate base calling, 
and demultiplexing through guppy (v.6.1.5; ONT).

Taxonomic classification of the honey bee associated 
reads was accomplished using in-house validated data-
bases, with additional validation against the complete 
National Center for Biotechnology Information (NCBI) 
database. A semi-quantitative report was generated by 
comparing the resulting classified read numbers to the 
reads attributed to the spike-in virus, enabling the cat-
egorisation of viral and bacterial loads into five levels: 
very low, low, medium, high, and very high, as previously 
determined via comparison with qPCR [25]. For species 
classification of the bacteria, reporting was limited to 
the genus level due to sequencing accuracy limitations, 
as described earlier [18]. Negative PBS controls were 
included to identify reads that might result from the pro-
cedure (i.e., used kits, enzymes, buffers, etc.) and not the 
bee haemolymph.

Viral whole genome sequence analysis
Where sufficient absolute viral reads were obtained in 
each sample, virus-specific reads were extracted from 
the complete sequencing output and viral genomes were 
assembled using canu (v2.2; [26]) and polished with 
minimap2 (v. 0.2−r123; [27]) and medaka (v1.7.3; ONT), 
respectively. The genomes were inspected and manu-
ally curated. For Deformed wing virus (DWV), all avail-
able whole genome sequences were downloaded from 
NCBI (accessed on 15 May 2023; n = 121 respectively and 
aligned together with our DWV whole genome strains 
using MAFFT (v.7.453; [28]) prior to phylogenetic infer-
ence using IQ-TREE (v1.6.12; [29, 30]). The IQ-tree 
software allowed the selection of the best substitution 
model by its built-in modelfinder [31] and was run with 
1000 ultrafast bootstrapping trees (–b). Identification of 
recombination was done using RDP5 using default set-
tings [32]. Recombinants were considered true, employ-
ing a conservative approach, if all seven recombination 
detection methods showed a significant recombination 
signal. To reconstruct a full phylogenetic tree (model 
GTR + F + R10) and a reduced tree (model GTR + F + G4), 
MAFFT and modelfinder (IQ-TREE) were used.

Statistical analysis
A maximum possible prevalence calculation was per-
formed using WinEpi. We estimated a hive contains 
approximately 30 000 nurses and 30 000 foragers during 
bee season, which results in a maximum possible preva-
lence of 41.52% per colony (three bees sampled) when the 
pooled sample is negative. In winter, we took six winter 
bees with 10 000 bees per hive, which results in a maxi-
mum possible prevalence of 23.53% when the pooled 
sample is negative. The confidence level was set at 80%.

Results
During the entire sampling period, several viruses and 
bacteria were detected. For this discussion, we will only 
focus on the bacteria and viruses associated with honey 
bees, as shown in Figure 2. The excluded viruses and bac-
teria were associated with plants such as Cherry leaf roll 
virus or were kitome associated such as Acinetobacter sp.. 
Raw read sequencing output is uploaded to the Sequence 
Read Archive (SRA).

Eight different honey bee viruses were detected, includ-
ing Chronic bee paralysis virus (CBPV), Lake Sinai virus 
type 4 (LSV-4), Sacbrood virus (SBV), Apis mellifera fila-
mentous virus (AmFV), Deformed wing virus (DWV), 
Apis rhabdovirus 1 (ARV-1), Apis rhabdovirus 2 (ARV-2) 
and Bee Macula-like virus (BMLV). While CBPV, LSV-
4, SBV, AmFV and DWV were found in foragers, nurses 
showed the presence of CBPV, SBV, AmFV, ARV-1 and 
ARV-2.
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The dead bees were found to carry several viruses, such 
as CBPV, AmFV, DWV, and BMLV. CBPV was detected 
in spring and autumn; LSV-4 and SBV in spring; AmFV 
in spring, summer, and autumn; DWV in summer and 
autumn; ARV-1, ARV-2 and BMLV in autumn. A pair-
wise sequence analysis was performed for LSV-4 as three 
complete genomes could be reconstructed. The LSV-4 
viral genomes in the May sample showed a pairwise 
sequence identity of 99.80% compared to the first detec-
tion in April. A further drop to 97.59% was seen in the 
sample from July.

Phylogenetic analyses were conducted using the full 
genome sequences to determine the relationship between 
the new viral sequences found in our samples and those 
publicly available on NCBI. The study’s discussion will 

focus solely on the phylogenetic tree of DWV due to the 
significant variability observed among samples. The full 
genome sequences were uploaded to the NCBI GenBank, 
and their accession number can be found in Additional 
file  1, while the full phylogenetic tree of DWV can be 
found in Additional file  2. All sequences clustered into 
two distinct clades called "DWV" (or Type A) and "VDV-
1" (or Type B) (see Figure 3, reduced tree). Additionally, 
recombinants between Types A and B were found.

An RDP analysis was performed to verify if recom-
bination was present in the DWV strains. The DWV 
viral types were DWV-B in July, DWV-rec (recombi-
nant between DWV-A and DWV-B) in September, and 
DWV-rec in hive 1 and 2 types of DWV-rec in hive 4 in 
November (c1 and c2). The absolute DWV viral loads in 

Figure 2 Overview of detected viruses and bacteria. Third-generation nanopore sequencing output of nurses, foragers, live winter bees (Dec 
and Feb) and dead winter bees (Dec†). In November, the four honey bee hives were analysed separately, starting from the upper left and moving 
clockwise. A semi-quantitative report was generated by comparing the data to the spike-in virus previously included, enabling the categorisation 
of viral and bacterial loads into five levels: very low, low, medium, high, and very high. The dashed line indicates the point from which different hives 
from the same apiary were used.
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the sampling of October, the sampling of hives 2 and 3 in 
November and the dead hive were too low to obtain viral 
genome assemblies for these DWV strains.

In addition to the detection of viruses, we also detected 
12 different bacterial species: Arsenophonus sp., Gil-
liamella sp., Frischella sp., Spiroplasma melliferum, 
Snodgrassella sp., Bartonella sp., Bombilactobacillus sp., 
Lactobacillus sp., Apibacter sp., Entomomonas sp., Com-
mensalibacter sp. and Bifidobacterium sp. Giliamella 
sp. and Frischella sp. were detected in both nurses and 
foragers. All other genera were detected solely in forag-
ers. Giliamella sp., Bartonella sp., and Lactobacillus sp. 
were also detected in winter bees. In dead winter bees, 
Giliamella sp. and Frischella sp. were detected. Arseno-
phonus sp. and Spiroplasma melliferum were detected in 
spring and summer; Snodgrassella sp. and Bartonella sp. 
were detected in summer and autumn; Bombilactobacil-
lus sp., Apibacter sp., Commensalibacter sp., and Bifido-
bacterium sp. in summer; Lactobacillus sp. in summer, 

autumn, and winter; Entomomonas sp. and Snodgras-
sella sp. in summer and autumn; Giliamella sp. in spring, 
summer, autumn, and winter; Frischella sp. in spring, 
summer, and autumn.

Overall, fewer viral and bacterial species and loads 
were detected in nurses than foragers. Nurses had their 
highest pathogen load in the spring, while foragers had 
a high pathogen load in the spring and at the beginning 
of summer. In autumn and winter, the pathogen load was 
lower but more diverse. In live winter bees, the pathogen 
diversity was low.

Discussion
In this study, we conducted an extensive analysis using 
third-generation metagenomic nanopore sequencing on 
forager and nurse haemolymph samples spanning nearly 
a year. We found that nurses and foragers show different 
viral and bacterial loads and diversity. This is unsurpris-
ing as nurses and foragers encounter different pathogens 

Figure 3 Reduced phylogenetic tree deformed wing virus. Phylogenetic analysis (GTR + F + G4) shows a genetic distinction 
between the samples taken at different time points: DWV-B in July (Deformed wing virus-type B/1-0006422_c1_Jul2022_Hive01-02–03-04 
Belgium), DWV-rec in September (Deformed wing virus-rec/1-0007264_c1_Sep2022_Hive01-02–03-04 Belgium), DWV-rec in hive 1 (Deformed 
wing virus-rec/1-0007140_c1_Nov2022_Hive01 Belgium) and 2 types of DWV-rec in hive 4 (Deformed wing virus-rec/1-0007143_c1_Nov2022_
Hive04 Belgium and Deformed wing virus-rec/1-0007143_c2_Nov2022_Hive04 Belgium) in November, shown in bold. DWV-rec is a recombinant 
between DWV-A and DWV-B. The DWV type B clade is shown in yellow, DWV type A is shown in green, and DWV-rec is shown in blue.
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due to their distinctive hive tasks. Furthermore, it is 
important to note that foragers and nurses possess vary-
ing immunities, including differing haemocyte numbers 
and compositions. These differences may contribute to 
variations in susceptibility to pathogens and their result-
ing effects on disease outcomes [22, 23]. Although vari-
ations in pathogens were expected, most studies do not 
differentiate between different age groups of bees or men-
tion the age of the bees [7, 9, 11]. This lack of differentia-
tion in honey bee samples can lead to markedly divergent 
outcomes and conclusions on apiary health. Our findings 
serve as a demonstration of this phenomenon.

A total of eight viruses were detected, with Table 1 pro-
viding an overview of their classification, symptoms, and 
proven transmission routes. Notably, identifying only 
eight viruses sharply contrasts the 30 viruses identified 
in Gebremedhn et al. [10], where they similarly employed 
next-generation sequencing to explore the honey bee 
virome. This divergence may be attributed to their sam-
pling of whole bees, which possibly introduced a sig-
nificant number of contaminating viruses. Furthermore, 
the study explicitly noted that of the 30 viruses found, 
only five were specific to honey bees, 15 were specific 
to plants, and the remaining 10 were specific to insects. 
We were able to detect four of the five viruses from the 
Gebremedhn et al. study [10], namely DWV, SBV, AmFV, 
and LSV, which stresses the added value of using haemo-
lymph as a sample.

The first virus detected was the Chronic bee paralysis 
virus (CBPV). At the beginning of our observations in 
April, one hive in the apiary displayed clear clinical signs 
of CBPV (syndrome 1), but the hives included in this 
sampling did not. Although no visible symptoms were 
found in the sampled hives, we detected the virus in both 
the nurses and foragers during the first sampling, consist-
ent with previous research [33]. The virus was no longer 
detected during the second sampling in April and the fol-
lowing sampling in May. After the first sampling in May, 
the honey bee hives were moved. One newly included 
hive displayed clear CBPV symptoms in April.

CBPV was detected again during the second May sam-
pling in nurses, with syndrome 2 present in one of the 
sampled hives. This may have been due to the reintro-
duction of the virus from bees of neighbouring apiaries 
or other insects [34, 35]. It is also possible that the move 
induced stress, which can lower the immune system and 
result in more individuals becoming infected [36, 37]. 
CBPV was found to be present in both nurses and for-
agers, which is not surprising as CBPV can be transmit-
ted horizontally and presumably also vertically [34, 38]. 
The virus was no longer found two weeks after the nurses 
were initially detected to have CBPV. This finding could 
be due to multiple reasons, such as an immune response 
in the adults (mainly RNA interference), mortality or 
removal of the infected bees, behavioural responses such 
as fever, the number of infected individuals or viral levels 

Table 1 Overview identified viruses 

Overview of the identified viruses, their classification (family and genome), the known symptoms and proven transmission routes

Virus Family
genome

Symptoms Transmission
proven

Chronic bee paralysis virus Unclassified Enveloped ssRNA( +) Syndrome 1: trembling bees with a bloated abdomen. These 
bees are unable to fly; they crawl in front of the hive and die 
within a few days
Syndrome 2: hairless and darker bees (called black robbers) 
who suffered nibbling attacks by healthy bees. They also die 
within a few days [8, 34]

Oro-faecal [34]
Contact [79]

Lake Sinai virus Unclassified
ssRNA( +)

Associated with bad colony health, but symptoms are unknown 
[37]

Unknown

Sacbrood virus Iflaviridae
non-enveloped ssRNA( +)

Causes pupation failure, which results in swollen larvae filled 
with fluid. Young infected adult bees show precocious foraging 
and impaired foraging activity with a reduction of life span. 
Older adults can be infected but are asymptomatic [8]
Pupae can also be asymptomatic [80]

Oro-faecal [8]

Apis mellifera filamentous virus Baculoviridae
Enveloped dsDNA

Milky-white haemolymph [8, 50] Oro-faecal [50]

Deformed wing virus Iflaviridae
non-enveloped ssRNA( +)

Causes crumpled or aborted wings, shortened abdomens, 
paralysis, severely shortened adult life span, impaired learning, 
and foraging behaviour [8, 47]

Oro-faecal [47]
Vertical [47]
Varroa [8, 47]

Apis rhabdovirus 1 and 2 Rhabdoviridae Enveloped ssRNA(−) Unknown Unknown

Bee macula-like virus Tymoviridae
ssRNA( +)

Unknown Unknown
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below our detection limit), or a non-homogenous viral 
spread in the population [39].

Nevertheless, this pattern of CBPV infection is con-
sistent with previous research that indicates the virus is 
predominantly present in the spring and summer months 
[8]. In December, CBPV was once more detected in the 
dead hive, suggesting that the virus could have been 
important in the downfall of this particular hive, espe-
cially as CBPV has been linked with winter mortality 
before [40]. In winter, honey bees are more susceptible 
to viral diseases as they experience an immune depres-
sion [41]. CBPV is considered an important emerging 
disease, particularly as cases increase exponentially over 
time, although outbreaks are region-dependent [42]. 
Several Belgian screenings have been conducted, which 
reveal that CBPV was detected in 29% of the colonies in 
2017. This number demonstrates an increase compared 
to the 1.7% found in Flanders in 2011 but a considerable 
decrease compared to the 69% found in Wallonia in 2006 
[7, 43].

The second virus, Lake Sinai virus type 4 (LSV-4), was 
detected from April to June and again in July. LSV-4 was 
first detected in Belgian forager bees in 2011 [44]. Inter-
estingly, we only detected LSV-4 in foragers and not in 
nurses. It is suggested that Varroa mites play a role in 
transmitting this virus, but this is still under debate [8, 
45, 46].

The Sacbrood virus (SBV) was detected in May in 
both foragers and nurses without apparent symptoms. 
Previously, asymptomatic infections of SBV have been 
reported [8]. Almost all hives were positive during a 
Belgian screening in the spring of 2017. This finding 
contrasts with a previous study in July 2011, where only 
19% of hives tested positive [7, 43]. According to earlier 
research, SBV is mostly present in spring, corresponding 
with our results [7, 8, 43].

We found that the Deformed wing virus (DWV) cir-
culated in live bees in June, and September through 
October. Interestingly, DWV was detected exclusively in 
foragers, although some honey bee nurses (second sam-
pling of June and October samplings) were found to be 
carrying Varroa mites. DWV-B, the most prevalent gen-
otype, is transmitted mainly via Varroa mites that feed 
on honey bee pupae [8, 47]. We noted that the sampled 
nurses did not show deformed wings, so the viral load 
may have been too low [48]. Another possibility is that 
the Varroa mites present on the nurses did not carry 
DWV-B. A recent study found that approximately only 
40% of collected mites were able to induce a high (overt) 
level DWV infection [49]. As mentioned, DWV is a prev-
alent virus, demonstrated in a previous Belgian study 
from the spring of 2017 when all the screened Belgian 
hives tested positive [7]. In the 2011 Belgian screening, 

DWV-A and DWV-B were not differentiated, but the 
overall DWV prevalence was still high at 69% [43]. Fur-
thermore, DWV was also detected in the dead bees. In 
literature, DWV has also been associated with winter 
mortality [8, 34, 47].

Apis mellifera filamentous virus (AmFV) was detected 
in live bees in May, June, and August. This result corre-
sponds to previous studies that detected AmFV all year 
round [50]. However, AmFV was detected in both for-
agers and nurses, which contradicts the results of Hart-
mann et al. [50], where it was reported that worker bees 
became infected one week post-emergence [50]. No 
impact on overwintering and AmFV has been found [50], 
although we identified AmFV in the dead hive.

Apis rhabdovirus 1 and 2 (ARV-1 and ARV-2), some-
times called bee rhabdoviruses, were detected in Octo-
ber [51]. Thanks to next-generation sequencing, ARV has 
only recently been identified, so very little is known about 
them [11]. We found that only the nurses were infected 
with ARV, indicating that the infection occurred before 
they emerged. ARV was not detected in foragers, which 
suggests that either the nurses died before they could 
start foraging (which is, for example, the case in CBPV 
infection and the so-called ‘black robbers’), or they were 
able to control viral replication and eliminate the virus.

The Bee Macula-like virus (BMLV), also known as 
Varroa destructor Macula-like Virus, was discovered in 
November in two surviving hives and in the dead hive in 
December. In July 2011, BMLV was detected in 84% of 
Belgian colonies, but no correlation with colony mortal-
ity was found [44].

We also detected a wide range of bacteria in addition 
to viruses. We propose different ways these bacteria 
could be detected in the haemolymph, including patho-
genic bacteria that colonise it, intestinal leakage, Varroa 
mite bacterial injection via feeding, and the physiological 
haemolymph microbiome.

Some bacteria are considered pathogenic and colonise 
the haemolymph, for example, by breaching the gut bar-
rier. We identified Spiroplasma melliferum, a well-known 
honey bee pathogenic bacterium. Spiroplasma sp. are 
presumed to be the causative agents of May disease or 
spiroplasmosis. The symptoms of May disease include 
bees that appear to be crawling and trembling, with a 
swollen and hard abdomen caused by the accumulation 
of undigested pollen in their gut. Although individual 
bees can die, colonies recover naturally. It is presumed 
that Spiroplasma sp. breaches the midgut barrier to colo-
nise the haemolymph [52]. No symptoms of May disease 
were noted in our hives, but the bacteria were detected 
in spring, which is the typical period during which this 
disease occurs. In July 2011, a Belgian screening found 
a Spiroplasma melliferum presence of 4.4% without an 
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association with winter mortality [44]. It is possible that 
some of the other detected bacteria could be pathogenic, 
but they have not yet been linked to honey bee dis-
ease. Currently, only five pathogenic bacteria have been 
described [19].

Frischella perrara  causes scab formation, which is 
a melanin deposit at the end of the honey bee midgut 
called the pylorus. Furthermore, the ‘scab’ can be colo-
nised by other bacteria, such as Giliamella apicola and 
Snodgrassella alvi [53]. This melanin production is an 
immune response that may help prime newly emerged 
workers, as suggested in previous studies [54]. We sug-
gest that this bacterium can penetrate the gut barrier by 
suppressing the immune system and entering the haemo-
lymph. Engel et al. found that scab formation is absent in 
newly emerged nurses but develops in older nurses [53]. 
This finding is noteworthy as, in our study, Frischella sp. 
were detected in nurse haemolymph. It is possible that 
these nurses did not have the immune capacity to form 
a melanin plaque and, therefore, could not stop the pen-
etration of this bacterium.

One potential cause of this immune suppression could 
be the stress caused by the translocation of the hives in 
May. Thus, the prevalence of Frischella sp. in honey bee 
haemolymph could be important and require further 
investigation. Additionally, physiological or pathological 
intestinal leakage of gut microbiome bacteria could result 
in bacterial detection in the haemolymph. Some identi-
fied bacteria are part of the honey bee gut microbiome, 
such as Arsenophonus sp., Giliamella sp., Frischella sp., 
Snodgrassella sp., Bartonella sp., Bombilactobacillus sp., 
Lactobacillus sp., Apibacter sp., Commensalibacter sp. 
and Bifidobacterium sp. [55–58]. It is possible that other 
detected bacteria are also part of the gut microbiome 
but have not yet been identified in previous studies. For 
example, Entomomonas sp. was detected only recently (in 
2020) in Asian honey bees [59].

Moreover, oxalic acid treatment can potentially pro-
duce intestinal leakage as it has been proven to cause 
honey bee mortality, intestinal cell death, and keratin 
destruction [60–62]. The hives in this study were treated 
with oxalic acid at the start of August, but the bacterial 
species did not reach high loads. However, a wider vari-
ety of species were detected. Furthermore, Varroa mites 
can directly inject bacteria into the haemolymph [63]. In 
some insects, the existence of a haemolymph microbi-
ome has also been described [64]. Nevertheless, the fact 
that these bacteria can enter the haemolymph highlights 
the need for more research on bacterial infections in 
honey bees.

Notably, the viral and bacterial load was significantly 
higher during the spring and early summer, as several 
other studies have also observed [8, 33, 50, 65, 66]. This 

finding is surprising because there is always a constant 
risk of reintroducing viruses and bacteria from other 
apiaries or insects [34, 67, 68]. This reintroduction can 
also be seen in our results as AmFV and LSV-4 reappear 
later in the season in live honeybees. Another possibil-
ity is that these two viruses were still present in a small 
number of bees, but the hive could no longer control 
them due to factors such as immune depression caused 
by brood interruption [35]. Nevertheless, when a virus 
is detected again in the bee hives in this study, they do 
not reach high loads. However, newly introduced viruses, 
such as ARV, do reach higher values. This pattern sug-
gests that the bees can protect the new generation from 
infection, similar to a phenomenon called trans-genera-
tional immune priming (TGIP) observed in honey bees. 
TGIP functions at the colony-wide level to safeguard the 
next generation [69]. The primary focus of TGIP research 
in honey bees has been on bacterial infections, such as 
Paenibacillus larvae, the causative agent of American 
foulbrood. These findings have led to the recent U.S.D.A. 
approval of the first honey bee ‘vaccine’ against Ameri-
can foulbrood [70, 71]. Research on TGIP against viral 
infections in honey bees has primarily focused on a 
transmissible RNA pathway due to honey bees defending 
themselves against viral infection via RNA interference 
(RNAi), for which dsRNA is the trigger.

There are two exceptions to this pattern: DWV and 
LSV-4. Although DWV was initially detected in July, it 
was also found again from September to December. This 
may be attributed to the introduction of a different geno-
type. While genotype B (DWV-B) is the most prevalent 
in Belgium, genotype A (DWV-A) is also present [7]. 
There have also been numerous reports of recombinants 
of these two types (DWV-rec) in Europe and other parts 
of the world [72, 73]. A phylogenetic analysis was per-
formed to verify genotype differences, which showed a 
clear genetic distinction between the samples taken at 
different time points (see Figure  3). This difference in 
genotype can explain why DWV was able to re-infect 
the hives, which was already proven for different DWV 
strains [74].

LSV-4 was detected again in foragers in July. However, 
we noted that the virus had evolved when viral genomes 
were compared. The pairwise sequence identity of the 
isolate from May dropped to 99.80% compared to the 
first detection in April. An even further drop to 97.59% 
was seen in the sample from July, illustrating the rapid 
mutation rate and how ssRNA viruses are extremely sus-
ceptible to mutations. This mutation process could lead 
to immune evasion and explain the virus’s reappear-
ance [74]. Recombinant analysis showed no evidence of 
recombination in any of the three genomes. Other stud-
ies that noted a peak in spring and summer, have also 
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reported exceptions. However, it is challenging to deter-
mine whether recombination or mutations were present 
as these studies either used qPCR or did not provide 
whole genome analyses [33, 37, 65, 66].

Based on our findings, we hypothesise that honey bee 
colonies become infected with a wide range of pathogens 
during the spring season, enabling the hive to build up an 
immunity against these pathogens and to provide protec-
tion for themselves and future generations throughout 
the year, particularly during the crucial winter period. 
However, when an immune evasive or emerging patho-
gen emerges during summer or autumn, the acquired 
immunity is ineffective, leading to infection within the 
hive. While the bees can overcome less pathogenic path-
ogens, the hive ultimately collapses if the pathogen is 
highly pathogenic and/or the immune system is compro-
mised (such as during the winter period or due to genetic 
factors).

In the study conducted by Truong et  al., sick apiaries 
were analysed, and viruses were detected throughout the 
year [65]. However, a significant increase was observed in 
July. This finding aligns with our hypothesis: if immune 
priming fails, weak colonies will struggle to manage viral 
infections. One example of how a pathogen can enter 
an apiary or reach high levels during autumn is when 
beekeepers move hives or materials from one apiary to 
another. Another reason is due to insufficient control of 
the Varroa mite. Honey bees are typically treated against 
Varroa mites in December or January, but a treatment 
in autumn could be potentially more beneficial. Under-
standing the mechanism of TGIP in honey bees is cru-
cial for advising beekeepers and developing strategies to 
combat viral infections. This can involve implementing 
measures such as a vaccination which has been used for 
Paenibacillus larvae, genetic selection, or feed additives 
[70, 71, 75]. We will study this hypothetical model in 
more detail in future studies.

It is important to note that we did not identify all 
viruses that were present in the hives. For instance, 
ARV-1 might have infected the colony prior to our 
detection and possibly reached elevated levels due to 
factors such as immune suppression rather than a lack 
of immune priming. A disadvantage of using haemo-
lymph is the labour-intensive sampling process com-
pared to analysing whole bees, resulting in a smaller 
sampling size and a higher chance of missing viral 
infections. It is also essential to acknowledge the lim-
ited understanding of infection transmission within a 
colony [8]. It is unclear whether infection consistently 
results in a colony-wide spread or if individual and 
social immunity can effectively eliminate it, particularly 
given bees’ close contact, such as through trophallaxis. 
In this study, we set out to determine which pathogens 

were most abundant in an apiary, because we question 
the relevance of pathogens found in low abundance 
or those that could be easily eliminated through indi-
vidual or social immunity. Furthermore, an important 
distinction must be made between qPCR on whole bees 
and third-generation nanopore sequencing on haemo-
lymph. Using haemolymph, we could detect active viral 
infections, as viruses must breach the gut or exoskel-
eton barrier to enter the hemocoel without contamina-
tion and interference with the gut microbiome.

Our enrichment protocol enables us to exclusively 
detect active viral infections by eliminating any extra-
neous free genetic material. QPCR on whole bees can 
result in the detection of viruses or loose viral genomic 
material from the surface and gut, which will not, per 
se, result in infection as high oral dosages are sometimes 
necessary for viral infection [9]. Extrapolating our data 
to literature qPCR becomes challenging due to this issue. 
Although, analysing haemolymph instead of whole bees 
has a lot of advantages. One disadvantage is that viruses 
which replicate locally can be missed. Due to the lim-
ited understanding of most honey bee viral pathogen-
eses, these viruses are still unknown [38]. In the study 
of D’Alvise et al., the Black queen cell virus (BQCV) was 
present all year round, with a peak in spring and sum-
mer [33]. BQCV is suspected to replicate in the gut. In 
artificially infected queens, it has been identified in 100% 
of gut samples and 70% of ovary samples but not in the 
haemolymph, head, spermatheca, and eviscerated body 
[38]. A potential problem with nanopore sequencing is 
the possibility that some viruses are abundantly present 
in the haemolymph after infection compared to others. 
In this way, it may suppress the detection of low-abun-
dant viruses. Third-generation nanopore sequencing 
generally exhibits a sensitivity comparable to, but slightly 
lower than, qPCR, although our enrichment protocol and 
sample selection have largely mitigated this discrepancy 
[18, 25]. We did not correlate third-generation nanopore 
sequencing on haemolymph with qPCR on whole bees as 
the results would be virus-dependent. Additionally, some 
novel viruses were identified so correlations are even 
more challenging.

Furthermore, comparing haemolymph to whole bees is 
challenging as analysis cannot be undertaken for both in 
the same bee. When haemolymph is collected, a poten-
tially important viral reservoir is removed; thus, the 
bee will no longer be representative as a whole bee. The 
previously mentioned advantages and disadvantages of 
a small sampling size, haemolymph sampling and third-
generation sequencing may explain in part why, in the 
studies of D’Alvise et  al. [33] and Faurot-Daniels et  al. 
[37], viruses could be found all year round in contrast to 
this study’s results.
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In addition to our hypothetical model, other hypothe-
ses for this pathogen peak are also possible. For example, 
higher honey bee activity and brood density are present 
during the flowering period (spring and summer). A 
higher number of individuals, both inside and outside 
the hive (e.g. contact with other bees), could increase 
viral transmission, resulting in a viral peak [76]. Another 
possibility is that Varroa mite infestation could be caus-
ing bees to drift into neighbouring hives and spread the 
infection. However, Varroa mite loads are expected to be 
highest during autumn [65]. An alternative possibility is 
the ‘robbing’ of neighbouring hives, most common in late 
summer to early fall. Other probabilities could be more 
virus-specific. For example, temperature fluctuations, 
which are typical in spring, are hypothesised to cause a 
higher prevalence of SBV [77]. Lastly, this study focused 
on viruses and bacteria, but other pathogens or chemi-
cals could influence this pattern, such as Nosema sp. and 
pesticides [78]. For future projects, we intend to incor-
porate Nosema sp. and chemical analysis to deepen our 
understanding of this phenomenon.

In conclusion, this study shows the added value of 
third-generation nanopore sequencing on honey bee 
haemolymph as AmFV, ARV-1, ARV-2 and a wide vari-
ety of bacteria were detected, which are typically not 
included in studies or screenings. Conducting multiple 
samplings per year on honey bees of different ages is 
vital as certain pathogens may not be present consist-
ently throughout the year or in both young and old bees. 
Finally, the potential role of TGIP under natural condi-
tions was proposed and acknowledged, which will lead to 
further research. In the future, more apiaries will be fol-
lowed longitudinally to validate our working hypothesis. 
Characterisation of the virome and bacteriome present in 
honey bee haemolymph in function of time will allow us 
to study which pathogens are causing honey bee hive col-
lapse. Ultimately, this will lead to better overall honey bee 
health and lower colony mortality.
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