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Abstract 

Highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b viruses were first detected in St. John’s, Canada 
in late 2021. To investigate the patterns of avian influenza virus (AIV) infection and immune responses subse-
quent to the arrival of H5N1, we sampled the wild urban duck population in this area for a period of 16 months 
after the start of the outbreak and compared these findings to those from archived samples. Antibody seropreva-
lence was relatively stable before the outbreak (2011–2014) at 27.6% and 3.9% for anti-AIV (i.e., NP) and H5-specific 
antibodies, respectively. During the winter of 2022, AIV-NP and H5-specific antibody seroprevalence both reached 
100%, signifying a population-wide infection event, which was observed again in late February 2023 following a sec-
ond H5N1 incursion from Eurasia. As expected, population-level immunity waned over time, with ducks seroposi-
tive for anti-AIV-NP antibodies for approximately twice as long as for H5-specific antibodies, with the population 
seronegative to the latter after approximately six months. We observed a clear relationship of increasing antibody 
levels with decreasing viral RNA loads that allowed for interpretation of the course of infection and immune response 
in infected individuals and applied these findings to two cases of resampled ducks to infer infection history. Our study 
highlights the value of applying both AIV surveillance and seroprevalence monitoring to provide a better understand-
ing of AIV dynamics in wild populations, which may be crucial following the global dissemination of clade 2.3.4.4b 
H5Nx subtypes to assess the threats they pose to both wild and domestic animals, and to humans.
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Introduction
Wild birds are the reservoir hosts of avian influenza 
viruses (AIVs), with waterfowl being one of the main 
reservoir groups and vectors by which AIVs are spread, 
along with gulls, shorebirds, and seabirds [1–4]. Low 
pathogenic avian influenza virus (LPAIV) infection of 
waterfowl rarely results in overt disease symptoms, 
with birds usually clearing the infection within a mat-
ter of days. Dabbling ducks (Anatinae) infected with 
highly pathogenic avian influenza virus (HPAIV) H5Nx 
subtypes, similar to LPAIV infection, can be minimally 
affected while shedding large quantities of virus, with 
mild disease symptoms and delayed local movements in 
some cases [5–8]. While many species of diving ducks 
(Aythyinae) also appear to be minimally affected, some 
such as tufted ducks (Aythya fuligula) have been shown 
to be particularly prone to experience symptomatic 
HPAIV H5Nx infections and can exhibit severe infection 
outcomes and high rates of mortality [6, 9, 10]. Recently, 
higher mortality in dabbling ducks due to HPAIV infec-
tions has been observed, representing a new pattern in 
one of the main reservoir hosts [10–12].

HPAI clade 2.3.4.4 H5Nx viruses have been circulating 
with increasing frequency in wild birds in Eurasia and 
Africa since 2005 [9, 13–15], with the first incursion of 
A/goose/Guangdong/1/1996 (GsGd) lineage H5N8 clade 
2.3.4.4 viruses into North America taking place in 2014 
[16]. This virus, and a reassortant H5N2, did not persist 
and become established in North American wild bird 
populations. However, new incursions of clade 2.3.4.4b 
viruses starting in late 2021 have resulted in extensive 
reassortment with North American lineage LPAIVs, 
widespread circulation of H5Nx viruses throughout 
North and South America within a wide array of avian 
hosts, and multiple spillover events into mammals [17–
20]. These HPAIVs now seem to be part of the endemic 
viral population in wild birds in the Americas, Eurasia, 
and Africa.

AIV surveillance in wild birds has been a global focus 
for decades and has contributed to understanding viral 
dynamics and identifying circulating strains in different 
regions and species. However, this has not been without 
challenges. Non-gallinaceous birds infected with LPAIVs 
are usually asymptomatic and test positive for viral RNA 
for only a very short period, generally 5–11 days [21–25], 
providing a narrow sampling window for the detection 
of active infections. An increasing number of serological 
studies have helped address this shortcoming, by which 
past AIV infection can be documented via detection of 
anti-AIV antibodies in the peripheral circulation for a 
period of months [24, 26–28]. A combined approach of 
AIV infection surveillance and serology can therefore 
help capture AIV dynamics in more detail and over a 

longer time frame, allowing interpretation of both active 
and past infections in populations [8, 29, 30].

A HPAI H5N1 clade 2.3.4.4b virus was identified in a 
great black-backed gull (GBBG, Larus marinus) that 
died in November 2021 in St. John’s, Newfoundland and 
Labrador, Canada, and was found to be closely related 
to viruses circulating in northwestern Europe in the 
spring of 2021 [31]. Shortly after this first detection, the 
virus was identified in an exhibition farm in the area that 
housed primarily domestic fowl, which resulted in mass 
mortality [31]. Sampling of wild urban ducks in the area 
began about a week later and active H5N1 infection was 
detected in the duck population in late December 2021.

The aim of this study was to thoroughly investigate pat-
terns of AIV infection and immunity in this duck popula-
tion over a period of approximately 16 months after the 
first arrival of H5N1 clade 2.3.4.4b to North America in 
November 2021. We accomplished this goal by employ-
ing a combination of AIV surveillance to understand 
when infection was occurring and serology, specifically 
of general anti-AIV-NP as well as H5-specific antibodies, 
to understand immune responses. This work focused on 
how immunity changed over time while epidemiological 
information provided context and timing of infection(s) 
and bird movements.

Materials and methods
Bird capture and sampling
Wild ducks were caught either by hand or bait trapping at 
several locations in or near the city of St. John’s, Newfound-
land, including Bowring Park (47.528862°, −52.745943°), 
Commonwealth Pond (47.500765°, −52.789646°), Kenny’s 
Pond (47.591366°, −52.715759°), Kent’s Pond (47.589212°, 
−52.722767°), Mundy Pond (47.551419°, −52.741791°), 
Quidi Vidi Lake (47.579076°, −52.699627°), and Topsail 
Pond (47.524388°, −52.903371°). Sampling occurred in 
the fall and early winter months from 2011 to 2014, and 
at 11 timepoints through 2022 and 2023 during the ongo-
ing HPAIV outbreaks (see Additional file 1). Bird age was 
determined using plumage aspect and cloacal character-
istics [32, 33]. Age categories included hatch year (HY), 
after hatch year (AHY), second year (SY), and after second 
year (ASY). Hatch year birds that have not yet fledged are 
denoted as local (L). All birds were banded with a metal leg 
band issued by the Canadian Wildlife Service Bird Banding 
Office.

Capture efforts targeted primarily mallards (Anas plat-
yrhynchos), American black ducks (A. rubripes), northern 
pintails (A. acuta), and occasionally hybrid ducks that 
were a combination of American black ducks, mallards, 
and/or feral domesticated ducks (Anas spp.). Additional 
species were sampled opportunistically in 2022 and 
2023, specifically American wigeon (Mareca americana), 
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Eurasian wigeon (M. penelope), and lesser scaup (Aythya 
affinis). As there were a limited number of ducks that 
were AIV RNA-positive at the time of capture, we 
included AIV surveillance and serology data from several 
seabird species originating from other work to explore a 
larger dataset for an analysis on the relationship between 
RNA load and antibody levels. These species were also 
impacted by outbreaks of HPAI H5N1 that occurred 
during the summer of 2022. Data for 100 seabirds sam-
pled at breeding colonies in eastern Newfoundland were 
included, with Atlantic puffins (Fratercula arctica), black-
legged kittiwakes (Rissa tridactyla), and common murres 
(Uria aalge) sampled between June and August 2022 and 
in June 2023, and northern gannets (Morus bassanus) 
sampled in July 2022.

Observations of wild bird movements
Observations and remarks regarding the patterns of 
arrival of migratory individuals and timeline and move-
ments of non-resident species were primarily made 
directly while working in the field, with additional sup-
port provided by local experts, other birders in the 
region, sightings posted to birding social media pages, 
and submissions to eBird [34].

Bird banding and encounter data
To provide further support of this wild urban duck 
population being comprised of primarily resident indi-
viduals, we obtained encounter data (reporting of a bird 
band) from any location for all dabbling and diving ducks 
banded within a 20-km radius of St. John’s from 1 January 
2010 to 17 May 2023 from the Canadian Wildlife Service 
Bird Banding Office.

Sampling periods
For analysis purposes, samples collected between 2011 
and 2014 were grouped into sampling seasons. Sam-
pling occurred across multiple months between Sep-
tember and March of each period, and are referred to as 
the 2011–2012, 2012–2013, 2013–2014, and 2014–2015 
seasons. Samples collected after H5N1 was first detected 
in 2021 were grouped as follows: winter-spring 2022 
(January to May 2022), summer-fall 2022 (July to Sep-
tember 2022), and then separately for samples collected 
in the months of February, March, and April 2023. Spe-
cific details about when each sample was collected can be 
found in Additional file 1.

Serology
Two to three millilitres of blood were drawn from the 
brachial wing vein of each captured individual. Serum 
was separated from clotted blood by centrifugation 
at 3000 ×  g for ten minutes and subsequently stored at 

−20 °C for future analysis. For 19 samples collected at the 
start of the outbreak and 28 archived samples, AIV com-
petitive enzyme-linked immunosorbent assays (cELISAs) 
were performed at the National Centre for Foreign Ani-
mal Disease (NCFAD) laboratory as previously described 
[35]. All other samples were tested using the IDEXX 
AI MultiS Screen Ab test (IDEXX Canada, Product # 
99-12119) as per the manufacturer’s instructions, which 
detects antibodies against influenza A nucleoprotein 
(NP) [36], with 12 samples initially tested at the NCFAD 
later re-tested using this assay. A sample to negative con-
trol ratio (S/N) of < 0.5 was considered positive for influ-
enza antibodies. As some studies have employed a S/N 
ratio of < 0.7 for positivity [27, 36, 37], this value is shown 
on relevant figures for comparison purposes. Samples 
from the 2011–2012 period were no longer available, 
therefore the previously published data were used [38]. 
All sera positive for anti-AIV-NP antibodies were subse-
quently tested at the NCFAD for antibodies specifically 
against subtype H5 using an in-house developed cELISA 
that detects antibodies against all clades of subtype H5 
[39].

Swab samples and RNA extraction
Oropharyngeal and cloacal swabs were collected from all 
individuals from 2022 to 2023 and the paired swabs were 
pooled into a single tube of Multitrans viral transport 
medium (Starplex Scientific, Product # S160-100) and 
represent a single sample per individual. Samples were 
stored in a cooler on ice and an aliquot was removed 
for RNA extraction within six hours, and samples were 
subsequently stored at −80 °C. RNA was extracted from 
140 μL of each sample using the Qiagen Viral RNA Mini 
Kit (Qiagen, Product # 52906) as per the manufacturer’s 
instructions and stored at −80 °C until further analysis.

Screening for influenza A viruses
Real-time RT-PCR was performed using AgPath-ID™ 
One-Step RT-PCR reagents (Applied Biosystems, Product 
# 4387424) on either a StepOnePlus or 7500 Fast Real-
Time PCR System (Applied Biosystems). All samples were 
screened for the presence of the influenza A virus (IAV) 
matrix gene and subsequent positives were screened for 
the H5 subtype of the haemagglutinin gene. RT-qPCR 
primers and probes, and cycling conditions detailed in 
[40] were used, with some modifications. For the initial 
RT-qPCR targeting the IAV matrix gene, 25 μL reactions 
were prepared using 12.5 μL of 2X RT-PCR buffer, 1 μL of 
25X RT-PCR enzyme mix, 0.25 μL of 20 μM F25 (5ʹ-AGA 
TGA GTC TTC TAA CCG AGG TCG -3ʹ), 0.25 μL of 20 μM 
R124 (5ʹ-TGC AAA AAC ATC TTC AAG TCT CTG -3ʹ), 0.25 
μL of 20  μM R124M (5ʹ-TGC AAA GAC ACT TTC CAG 
TCT CTG -3ʹ), 0.25 μL of 6  μM double-quenched probe 
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F64P (5ʹ-[FAM]-TCA GGC CCC[ZEN]CTC AAA GCCGA-
[IB]-3ʹ) (IDT Inc., Canada), 1.67 μL of AgPath Detec-
tion Enhancer (Applied Biosystems, Product # A44941), 
0.83 μL of nuclease-free water, and 8 μL of RNA. Cycling 
was performed in standard mode, with parameters as 
follows: 45  °C for 20 min, 95  °C for 10 min, followed by 
45 cycles of 95  °C for 5  s, and 60  °C for 1 min at which 
time fluorescent signal was detected. A standard curve of 
IAV RNA as well as no-template controls were included 
during each run. Thresholds were determined automati-
cally by the instrument’s software based on the standard 
curve, and this threshold was applied after manual con-
firmation to determine the cycle threshold (Ct) values 
for each sample. Samples that yielded the characteristic 
amplification curve and had a Ct ≤ 45 were interpreted as 
positive [41–43], while those that yielded the characteris-
tic amplification curve but did not surpass the threshold 
were interpreted as inconclusive and denoted as having a 
Ct > 45.

All samples that yielded an amplification curve for the 
IAV matrix RT-qPCR were subsequently screened for 
the H5 subtype using primers, probes, and cycling con-
ditions detailed in [44], with some modifications. The 
25 μL reactions were prepared using 12.5 μL of 2X RT-
PCR buffer, 1 μL of 25X RT-PCR enzyme mix, 0.25 μL of 
20  μM H5_1456-NA_F (5ʹ-ACG TAT GAC TAT CCA CAA 
TAC TCA -3ʹ), 0.25 μL of 20  μM H5_1456-EA_F (5ʹ-ACG 
TAT GAC TAC CCG CAG TAT TCA -3ʹ), 0.125 μL of 20  μM 
H5_1685_R (5ʹ-AGA CCA GCT ACC ATG ATT GC-3ʹ), 
0.125 μL of 20  μM H5_1685M_R (5ʹ-AGA CCA GCT ATC 
ATG ATT GC-3ʹ), 0.25 μL of 6 μM double quenched probe 
H5_1637P (5ʹ-[FAM]-TCA ACA GTG[ZEN]GCG AGT 
TCC CTA GCA-[IB]-3ʹ) (IDT Inc., Canada), 2.5 μL of nucle-
ase-free water, and 8 μL of RNA. Cycling was performed 
in standard mode, with parameters as follows: 45  °C for 
20  min, 95  °C for 10  min, followed by 45 cycles of 94  °C 
for 10 s, 57 °C for 40 s at which time fluorescent signal was 
detected, and 72  °C for 5  s. Any samples that yielded the 
characteristic amplification curve were interpreted as posi-
tive for H5.

Samples positive for the matrix gene that tested negative 
for H5 were presumed to be LPAIVs. For these samples, a 
686-bp fragment of the HA2 region of the haemaggluti-
nin gene was amplified using the NEB  OneTaq® One-Step 
RT-PCR Kit (New England Biolabs, Product # E5315S) 
and sequenced to determine the HA subtype. 25 μL reac-
tions were prepared using 12.5 μL of 2X OneTaq One-
Step Reaction Mix, 1 μL of 2X OneTaq One-Step Enzyme 
Mix, 1 μL of 10 μM HA-1134F (5ʹ-GGR ATG RTHGAYG-
GNTGG TAY GG-3ʹ), 1 μL of 10 μM Bm-NS-890R (5ʹ-ATA 
TCG TCT CGT ATT AGT AGA AAC AAG GGT GTTTT-3ʹ), 
1.5 μL of nuclease-free water, and 8 μL of RNA. Cycling 
parameters were as follows: 48  °C for 60  min, 95  °C for 

5 min, 7 cycles of 94 °C for 15 s, 42 °C for 30 s, and 68 °C 
for 3 min, then 35 cycles of 94 °C for 15 s, 58 °C for 30 s, 
and 68 °C for 3 min, followed by a final extension at 68 °C 
for 7  min. PCR products were subjected to electropho-
resis for visualization, and amplicons were purified using 
AMPure XP beads (Beckman Coulter) and subjected 
to Sanger sequencing at The Hospital for Sick Children 
(Toronto, Canada).

Classification of individual infection status
We used antibody levels (S/N ratios), AIV RNA load, 
and epidemiological data, specifically the known dates 
of population-wide infection, to classify each individual 
based on their infection status. Currently infected indi-
viduals were those with detectable viral RNA. Recently 
infected individuals represented those that were nega-
tive for AIV RNA but were sampled within six months 
of the population-wide infection events or had elevated 
antibody levels (S/N < 0.7). They were subdivided into 
categories of being infected one, three, or six months 
previously based on the epidemiological patterns, or 
recently infected if the time between infection and sam-
pling was unknown. Individuals having low antibody 
levels (S/N > 0.7) were classified as being either naïve or 
having antibody levels that had waned.

Statistical analysis and data visualization
R v4.1.0 [45] was used to perform data manipulation, sta-
tistical analysis, and data visualization. To test whether 
antibody levels declined over time at different rates for 
anti-NP and anti-H5 antibodies, we used a generalized 
linear model with a binomial response and a logit link 
function. S/N ratios were used as the response, with 
the week of the year as a linear covariate and a week by 
anti-NP/anti-H5-specific antibody interaction. A signifi-
cant interaction term meant the rates of decline for the 
two types of antibodies were different. In order to test 
whether antibody levels had changed since the time of 
last infection, a simple linear model was used, with S/N 
ratios as the response, and time since last infection (1, 3 
or 6  months) as  a linear covariate. A p-value < 0.05 was 
considered as significant for all tests. R packages used 
included cowplot v1.1.1 [46], data.table  v1.14.2 [47], 
ggpattern v1.1.1-0 [48], ggplot2 v3.4.0 [49], and readxl 
v1.4.2 [50].

Results
Samples collected and used in the study
A total of 217 serum samples were collected from ducks 
between 2011 and 2014. After the first cases of HPAI 
H5N1 in the province in late 2021, 83 paired swab and 
serum samples were collected from ducks between Jan-
uary 2022 and April 2023. In total, 300 duck sera are 
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included in this study from 298 individuals, with two 
ducks recaptured and resampled in 2023. Paired swab 
and serum samples from 100 seabirds that were sampled 
during the summers of 2022 and 2023 were also included 
for an analysis on the relationship between viral RNA 
load and antibody levels, providing a larger dataset than 
available solely from the ducks.

Movement patterns of banded ducks
In total, 1045 ducks were banded within the St. John’s 
area (20-km radius) between 1 January 2010 to 17 May 
2023. Of these banded birds, 176 were reported as 
being encountered at least once, with 172 (97.7%) being 
reported in St. John’s, two reported elsewhere on the 
island of Newfoundland, one reported in Labrador, and 
one reported in Nova Scotia. Of all 176 encounters, 
104 were reported dead/by hunters, 70 by recapture or 
resightings, and two were unspecified. This provides 
additional support that the wild urban duck population 

comprises primarily resident individuals that spend their 
entire lives in the same local region.

Changes in population seroprevalence over time
Before the incursion of HPAI H5N1 into the region in 
November 2021, the overall mean AIV-NP seropreva-
lence was 27.6% (range 17.6–52.6%) for the sampling 
seasons of 2011–2015. Antibodies specifically against 
H5 were markedly lower at a mean seroprevalence of 
3.9% (range 2.2–5.6%) between 2012 and 2014 (Figure 1), 
which reflects the fact that there were no HPAI H5Nx 
viruses circulating in this region during this time period 
and that LPAIV H5 strains circulate in this population 
at low prevalence [38]. In the winter-spring period of 
2022, one to four months after the arrival of HPAI H5N1, 
AIV-NP and H5-specific seroprevalence reached 90.9% 
(20/22) and 81.8% (18/22), respectively. This indicates 
that after the introduction of H5N1 to the region, most 
of the population was infected with this virus. During the 
summer-fall period of 2022, seroprevalence decreased to 
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45.8% (11/24) and 8.3% (2/24) for AIV-NP and H5-spe-
cific antibodies, respectively. Therefore, H5 seropositivity 
essentially returned to the baseline levels observed before 
the arrival of H5N1. In February 2023, just over one year 
after the original incursion, AIV-NP seroprevalence was 
approaching similar levels as observed over 2011–2014 
at 42.9% (9/21), while H5-specific seroprevalence had 
increased to 19% (4/21). Approximately three weeks later 
in March 2023, AIV-NP seroprevalence rose to 100% 
(10/10) and H5 RNA was detected in four (40%) of these 
ducks. Only one of the ducks (10%) was seropositive for 
H5-specific antibodies at this time. Seven weeks later, at 
the end of April 2023, all six individuals sampled were 
seropositive for both AIV-NP and H5-specific antibodies 
(Figure 1).

To further understand how immunity in the popu-
lation changed over time, we investigated the sero-
prevalence (n = 75) over 64 weeks, specifically from 28 
January 2022 through 25 April 2023, and also tested 
for AIV infection over this period (Figure 2). After the 
initial incursion of the clade 2.3.4.4b H5N1 virus and 
the population-wide infection event, seroprevalence 
decreased substantially over time. By approximately six 

months later, all ducks were seronegative for H5-spe-
cific antibodies, while half were still anti-AIV-NP anti-
body seropositive. AIV-NP antibodies were elevated for 
approximately twice as long as H5-specific antibodies 
( χ2 = 4.97, df = 9, p = 0.0005) over this period. A change 
in AIV-NP seropositivity occurred between weeks 32 
and 37, corresponding to July and August 2022, when 
several individuals tested positive for non-H5 AIVs 
(H9Nx, H11Nx, and two additional strains of unknown 
HA subtype). This resulted in a slight increase in 
seropositivity that aligned with detection of LPAIVs 
through the summer of 2022 to February 2023 (Fig-
ure 2). In March 2023, H5-subtype viral RNA was again 
detected, and all birds sampled were AIV-NP seroposi-
tive, with only one of these individuals seropositive for 
H5-specific antibodies at this time. By the end of April 
2023, all individuals sampled were seropositive for both 
AIV-NP and H5-specific antibodies, indicating that an 
H5 subtype virus had again spread through the popu-
lation. Overall, using a combination of AIV surveil-
lance and strain subtyping, serology, and epidemiology 
we were able to construct a robust timeline of AIV 
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infection and immune response in this population for 
the 16-month period (Figure 3).

Immune responses in currently infected individuals
There were five individuals that were actively infected 
that had Ct values < 40, and these showed a negative 
relationship between antibody levels and viral RNA 
load (Figure  4). For ducks that were AIV RNA-negative 
at the time of sampling and where the time since infec-
tion was known, specifically those infected one, three, or 
six months prior to sampling, antibody levels decreased 
significantly over this time period (Figure  4; F = 5.71, 
df = 1,15, p = 0.03).

Including additional AIV prevalence and seropreva-
lence data obtained from various seabird species further 
supported the patterns observed in the ducks. Of the 
combined duck and seabird samples (n = 176), 17 indi-
viduals (9.7%) were currently infected and showed a clear 
relationship of increasing antibody levels with decreasing 
AIV viral RNA load (Figure  5A), an expected immuno-
logical response. A generalized linear model was used to 
highlight this relationship, showing the immune response 
in infected individuals at a population level (Figure 5B).

Changes in serology of two recaptured ducks
Over the course of sampling between January 2022 and 
April 2023, two northern pintails were recaptured and 
resampled, allowing for comparison of antibody lev-
els between the two timepoints. Both individuals were 
captured and recaptured at the same location, Bowring 
Park, and were viral RNA-negative at both sampling 
time points. The first, a male ASY (band # 1196-13442) 
was first captured on 28 January 2022 and subsequently 
recaptured on 7 February 2023, totalling 375  days 
between samples. The second, a female AHY (band 
# 1196-13448) was first captured on 31 July 2022 and 

subsequently recaptured on 7 February 2023, totalling 
191 days between samples. We do not know if they were 
infected with AIV(s) between the sampling events, but 
antibody levels were lower in both individuals at the time 
of recapture, although to different degrees (Figure 6).

Discussion
In this investigation we used a combination of AIV sur-
veillance, serology, and epidemiology to document AIV 
infection and immune responses in an urban duck popu-
lation over a period of 16 months following the incursion 
of the clade 2.3.4.4b H5N1 virus in late 2021 and com-
pare this to the AIV seroprevalence of the population 
prior to the arrival of HPAIV. Through repeat sampling of 
the same population, we investigated changes in antibody 
levels through two population-wide HPAIV infection 
events and examined patterns of immune response over 
the course of AIV infection on individual scales. Using 
this combined information in the context of a duck popu-
lation largely composed of non-migratory resident indi-
viduals, we were able to generate a robust AIV infection 
and immunity timeline at a population-wide scale, add-
ing to the growing body of literature about these complex 
dynamics.

Changes in seroprevalence over time
Over the course of 2011–2014, mean AIV-NP seropreva-
lence was 27.6%, with some variation between seasons. 
Sampling over these years typically occurred during the 
late fall and early winter, during and after typical peak 
AIV circulation in the region. These data serve to estab-
lish a baseline for AIV immunity in this population prior 
to the incursion of H5N1 into the region. A variety of 
factors could affect variation in seroprevalence between 
years, including year-to-year variations among circulat-
ing AIV subtypes/strains and population age structure 

Figure 3 Summary of the AIV infection and immunity timeline since arrival of HPAI H5N1 in the region. 
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and exposure history. AIV prevalence can follow cyclic 
patterns, with increased prevalence every several years 
[51–54]. Prevalence was noticeably higher in 2011–2012, 
however, these individuals were captured by bait-trap-
ping, which may overestimate true AIV prevalence [55], 
while ducks were captured by hand in the other years.

As expected, AIV seroprevalence increased greatly in 
the population following the arrival of H5N1 in Novem-
ber 2021, when nearly every duck sampled in January 
2022 was seropositive. There was nearly homogenous 
seroprevalence across all sampled sites and the same 
banded ducks were observed using multiple urban water-
bodies in the area. Given this, along with the extremely 
high proportion of ducks banded locally only ever being 
encountered in the same area, we consider the ducks in 
this urban region at this time to represent a single pop-
ulation. Therefore, there was a population-wide infec-
tion event after the arrival of the virus from Eurasia. 
As AIV-infected waterfowl often exhibit reduced local 

movements, the large number of infected individuals 
shedding virus into the local environment could have 
increased the infection rate at this time, facilitating profi-
cient spread throughout the population to cause the near 
homogenous seroprevalence [8, 56]. It is possible that the 
two seronegative individuals sampled in winter-spring 
2022, a mallard and an American wigeon, had moved 
into the area from elsewhere and were therefore not pre-
sent at the time of the population-wide infection that 
occurred roughly a month and a half prior to their sam-
pling. Alternatively, although we believe less likely due to 
an increase of the number of ducks present in February 
compared to January, they may have been present in the 
area but were not infected or were infected but did not 
generate a detectable antibody response.

Using repeated sampling of this population for roughly 
16  months we found that AIV-NP and H5-specific 
seroprevalence changed greatly in the months follow-
ing the H5N1 incursion. Individuals were seropositive 
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for anti-NP antibodies for approximately twice as long 
as H5-specific antibodies, with the population being 
H5-seronegative approximately six months after the 

incursion. It is well known that waterfowl, and this duck 
population specifically [38, 57], are frequently infected 
by LPAIVs, which likely explains the longer period of 
elevated anti-NP antibodies that are boosted with each 
subsequent infection. Dabbling ducks using human-dom-
inated landscapes in Atlantic Canada show notably high 
survival rates and strong annual site fidelity to wintering 
areas [58], leading to a population with an older age dis-
tribution than usual. This older age structure may have 
contributed to the higher seroprevalence overall and over 
time, as antibody levels are elevated and persist longer in 
older individuals [27, 59, 60]. With low seroprevalence of 
H5-specific antibodies from 2012 to 2014, assumed to be 
due to occasional circulation of LPAI H5 viruses, most 
individuals sampled in 2022 were likely infected for the 
first time with an H5 virus, explaining the shorter period 
in which these specific antibodies persisted.

In March 2023, H5 viral RNA was again detected in 
the population. This virus was different than the origi-
nal virus from the winter of 2022 and represented a new 
incursion into the region (Wight et al., unpublished data). 
The appreciable change in both AIV-NP and H5-specific 
seropositivity observed between weeks 58 and 59 (Feb-
ruary 2023) therefore served as a signal of low-level cir-
culation of the new H5 virus in the population prior to 
detection of active infections. Based on the declining 
H5-specific antibody seroprevalence since the original 
population-wide infection event and the lack of H5 viral 
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RNA detected, H5-specific seropositivity was presum-
ably very low until the time of the second incursion event 
that occurred sometime in February 2023. By the end of 
April 2023, all individuals sampled were seropositive for 
both AIV-NP and H5-specific antibodies, indicative of 
a second population-wide infection event. Although the 
population was fully infected a year prior, and approxi-
mately half of the population still had elevated AIV-NP 
antibody levels when the new H5 virus appeared, this was 
not sufficient to protect against infection and widespread 
circulation.

We consider there are two plausible routes for trans-
mission of the new H5N1 virus into the wild urban duck 
population. In February 2023, several species of div-
ing ducks (greater and lesser scaup (Aythya marila, A. 
affinis), tufted ducks (A. fuligula), ring-necked ducks 
(A. collaris), and red-breasted and common mergansers 
(Mergus serrator, M. merganser)) that would normally 
be using coastal marine habitat at this time of the year 
[61] took shelter at Quidi Vidi Lake from a harsh winter 
storm. This mixing of these diving ducks with the urban 
population could have served as the route of transmis-
sion. Alternatively, hundreds of gulls originating from 
Arctic, European, and mainland North American breed-
ing populations congregate at Quidi Vidi Lake each win-
ter, which is the same location as the first detections of 
the new H5N1 in the ducks (Additional file 1). Gulls have 
been identified as important vectors by which Eurasian 
clade AIVs can enter into North America [62–64], and 
it is possible they brought the new H5N1 into the region 
and introduced it into the local duck population.

Re-infection of the population just over a year later 
could have been due to a variety of factors. The higher 
virulence and infectivity of HPAIVs compared to LPAIVs 
likely played an important role in the original and subse-
quent population-wide infection events [10, 11, 65–67]. 
Immunological factors such as waning immunity that did 
not provide protection from re-infection, escape from 
the immune system due to low cross-reactive antibodies 
owing to differences between the two viruses, and delay 
in memory responses that would allow viral infection to 
occur before a protective response could be mounted, 
may have also played a role. Several groups have shown 
that antibody levels decrease over time following infec-
tion of AIV-naïve captive ducks with a variety of differ-
ent AIVs, as expected. However, these homologous and 
heterologous challenge studies have shown that antibody 
levels rebound in a matter of days after a second infec-
tion and ducks are often protected from clinical disease 
[23, 24, 68]. Unfortunately, the majority of these stud-
ies, including all those on HPAIVs [22, 28, 69–71], have 
been performed at timescales of weeks, as opposed to 
months or years, periods that are relevant to timing of 

bird migration, and therefore it is currently unknown 
how long HPAIV-specific antibodies remain elevated 
and how long individuals are protected from subsequent 
re-infection.

Migratory individuals with lower AIV seroprevalence 
that arrived in the region as well as AIV-naïve ducks 
born in the summer of 2022 may have also contributed 
to the spread of the 2023 H5N1 virus among the popula-
tion. The success at which these viruses spread through-
out the population was also likely influenced by the two 
H5N1 infection events occurring in early winter, after the 
typical fall AIV infection peak [3], when antibody levels 
are waning and low energy stores due to reduced food 
availability and colder conditions may have made birds 
more susceptible to infection [21, 43, 72]. Additionally, 
increased density of birds due to frozen waters may have 
increased the likelihood of infection during this time. 
Following the detection of the newly introduced lineage 
H5N1 in early 2023, several mute swans (Cygnus olor) 
and a number of American black ducks in St. John’s were 
reported dead, while there was no documented mortality 
of waterfowl in the region when H5N1 initially infected 
the population in late-2021/early-2022 [73].

Relationship between viral load and antibody levels
Extending beyond population-scale seropositivity, we 
used S/N ratios as a measure of antibody levels along 
with AIV RNA load (based on Ct values) to investigate 
patterns of immune response over the course of infec-
tion on an individual scale. As individuals progress along 
the course of infection and transition from the viremic 
to immunologic phase, viral RNA decreases while anti-
body levels begin to increase. With substantial varia-
tions by species, virus, and body condition, previous 
work has found that AIV shedding often peaks between 
1 and 8 days post-infection (dpi) and lasts for 5–11 days, 
although some individuals may shed virus for several 
weeks [21–24, 43, 68, 74, 75]. The period of viral shed-
ding has also been found to decrease with more frequent 
infections [59], and therefore there is a very small win-
dow in which ducks can be caught and documented with 
an active infection [25].

Recently infected individuals had a range of antibody 
levels, with those sampled closer to the date of the pop-
ulation-wide infection having higher levels than those 
infected many months prior (Figure  4). In contrast to 
recently infected individuals, no pattern was observed 
with the timeline of infection and epidemiology or the 
antibody levels for naïve or waned birds. We did not pur-
sue statistical analyses by age structure or between sexes 
due to the limited sample size of each group for each 
sampling event, but there appeared to be no differences 
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in antibody levels for seronegative individuals by age 
class, agreeing with previous observations [43].

Immune responses in individuals with active infections
Nine ducks were sampled while actively shedding AIV 
and there was a negative relationship trend for antibody 
levels versus viral RNA load. This pattern was further 
supported by inclusion of additional data from seabirds 
in order to provide a larger dataset of currently infected 
individuals and the relationship of increasing antibody 
levels with decreasing viral RNA load is clear (Fig-
ure  5B). This is an expected immunological response 
and shows that innate and memory immune mecha-
nisms are quickly responding by generating antibod-
ies as individuals are clearing the infection and leaving 
the viral shedding phase [29]. This also allowed us to 
infer the phase of infection at an individual level. We 
are unable to determine previous infection history of 
each individual as we are interpreting this relationship 
as a whole population, but factors such as age, infection 
history, as well as species-level differences would be 
expected to affect antibody levels on an individual scale 
[27, 28, 43, 60, 74].

Serological changes in two recaptured ducks
Based on HPAIV prevalence and epidemiology over 
the course of this study, it is unlikely that either of the 
recaptured northern pintails were infected with HPAIV 
between the two sampling points. However, the male 
(1196-13442) was likely infected by an LPAIV at some 
point between the two sampling events as its anti-
body levels hardly changed between sampling events, 
roughly one year apart, and it did not have elevated 
H5-specific antibodies (Figure  6, Additional file  1). 
Captive infection studies have shown that AIV antibod-
ies persist for several months, however antibodies have 
not been found to remain elevated to this degree for 
over a year, even in older individuals [23, 24, 27, 28, 60, 
68]. In contrast, the second individual (female, 1196-
13448) seems unlikely to have been infected between 
sampling events. In light of previous findings from cap-
tive infection studies, even if this individual became 
infected soon after initial sampling, elevated antibody 
levels would likely still have been detected when resa-
mpled approximately six months later. Although these 
data come from only two individuals, using the com-
bined AIV prevalence, seroprevalence, and epidemio-
logical approach helps add to our understanding of 
AIV dynamics in wild populations. Efforts to resample 
individuals multiple times from locations with known 
AIV dynamics and population movements would be of 
substantial interest in future work to evaluate changes 

in seroprevalence more thoroughly, particularly on an 
individual basis, and how this contributes to population 
level immunity [29, 76].

Summary, conclusions, and future directions
Despite some limitations of this study, such as a lim-
ited sample size and that sampling occurred in a single 
region, our findings significantly add to the understand-
ing of AIV infection dynamics and immunity in one of 
the most important reservoir host groups. This was 
enabled by an established understanding of the AIV 
infection dynamics in this region where this duck 
population is composed of primarily resident individ-
uals. Using repeated sampling of this population dur-
ing ongoing HPAIV and LPAIV circulation, we were 
able to document waning immunity, observe immune 
activation occurring in infected individuals, and infer 
infection histories. We found that although population 
level infection and seroconversion did occur, immunity 
waned quickly, and the population became susceptible 
again to the virus. This further supports the high likeli-
hood of this virus becoming endemic with continuous 
circulation, as it now appears to be, contrasting the low 
levels of circulation, largely among young recruits and/
or naïve birds, as observed for many other microbial 
pathogens. Our findings have important implications 
for monitoring the ongoing risk from HPAIVs, as pre-
viously infected populations can be reinfected along 
relatively short time scales, allowing for repeated circu-
lation of the virus. This should be an important consid-
eration for future monitoring efforts as this virus and 
derived reassortants carried by wild birds may spill over 
into other hosts such as mammals and poultry, without 
the typical early warning signs of disease or mortality 
in wild birds that have often preceded these events.

It will be important to perform similar studies else-
where to determine if the patterns we observed also 
occur in other populations, species, and locations, par-
ticularly to compare the rate of waning antibody levels 
after peak AIV prevalence. The determination of whether 
these antibodies are neutralizing and if and for how long 
individuals with pre-existing immunity are protected 
from infection and/or severe disease would also be of 
significant interest. Additional captive infection stud-
ies should be performed to better understand the role 
of pre-existing and heterotypic immunity to LPAIVs 
and HPAIVs, particularly along timeframes that are rel-
evant to key aspects of bird biology such as migration. 
Conducting similar studies on birds other than ducks 
would help determine host susceptibility, assess the like-
lihood of experiencing severe disease and mortality, and 
may help identify species groups most at risk. Wildlife 
surveillance of infectious diseases is a critical aspect of 
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preparedness within a One Health framework and is par-
ticularly important with respect to HPAIV, which is prov-
ing to be a multispecies pathogen that can have impacts 
far beyond the poultry industry.
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Additional file 1. Detailed records for samples from ducks that were 
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