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Abstract 

Pasteurella multocida infects a wide range of animals, causing hemorrhagic septicemia or infectious pneumonia. Iron 
is an essential nutrient for growth, colonization, and proliferation of P. multocida during infection of the host, and com-
petition for iron ions in the host is a critical link in the pathogenesis of this pathogen. In recent years, there has been 
significant progress in the study of the iron uptake system of P. multocida, including its occurrence and regulatory 
mechanisms. In order to provide a systematic theoretical basis for the study of the molecular pathogenesis of the P. 
multocida iron uptake system, and generate new ideas for the investigation and development of molecular-targeted 
drugs and subunit vaccines against P. multocida, the mechanisms of iron uptake by transferrin receptors, heme recep-
tors, and siderophores, and the mechanism of expression and regulation of the P. multocida iron uptake system are all 
described.
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1  Introduction
Pasteurella multocida is a short, rod-shaped, Gram-
negative, conditionally pathogenic bacterium [1]. Based 
on the capsule and lipopolysaccharide (LPS) antigen, P. 
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multocida is divided into five capsular serogroups (A, B, 
D, E, and F) and sixteen LPS serovars (1–16) [2, 3]. P. mul-
tocida is capable of infecting a wide spectrum of domes-
tic animals (cattle, sheep, poultry, pigs, rabbits, dogs, and 
cats) as well as humans, causing pasteurellosis, which is 
characterized by infectious pneumonia and hemorrhagic 
septicemia, resulting in enormous economic losses to 
the farming industry [4]. Iron ions are essential elemen-
tal factors for the colonization and proliferation of P. 
multocida during host infection. The iron uptake system 
of P. multocida is important to the mechanism of infec-
tion and immunity that characterizes the host–pathogen 
interaction, and has received extensive attention from 
researchers [5–7]. Iron participates in DNA and protein 
biosynthesis, biofilm formation, redox and electron trans-
fer activities, and is required for growth and metabolism 
in microorganisms and animals [8, 9]. In the interaction 
between P. multocida and its host, iron has a crucial role 
in promoting bacterial growth, reproduction, adhesion, 
and expression of virulence factors [10–12]. The ability 
of bacteria to acquire iron is an important factor in their 
pathogenicity [13]. However, due to the host’s nutritional 
immunity, P. multocida frequently experiences iron defi-
ciency during host infection. For this reason, bacteria 
have evolved multiple absorption mechanisms to collect 
iron ions from the host’s transferrin (Tf) and hemoglobin 
(Hb) [14, 15]. In this paper, we review the development of 
three iron ion acquisition pathways, iron-uptake-related 
protein activities, and regulatory variables in P. multo-
cida. From the perspective of interfering with bacterial 
iron uptake, a systematic study of the iron uptake mecha-
nism of P. multocida will help generate new ideas for the 
development of innovative antimicrobial medicines and 
biologics.

2 � Biological functions of iron in bacteria
Iron is one of the most prevalent metallic elements on 
Earth, and it is typically present in either an oxidized 
(Fe3+) or reduced (Fe2+) state, which makes iron ions 
widely used in biological systems. Iron ions, are typically 
attached to proteins or as part of iron–sulfur clusters 
or heme groups, and are involved in a variety of impor-
tant biological processes in microorganisms, including 
aerobic respiration, ATP synthesis, electron transfer, 
DNA replication, and protein synthesis [16]. Thus, iron 
is a necessary factor for bacteria to perform their own 
metabolism and functions.

2.1 � Functions of iron–sulfur clusters in bacteria
Iron–sulfur clusters are among the oldest structures 
found in all living organisms, and they are protein–metal 
clusters with crucial regulatory or catalytic functions. 
Functional investigations of iron–sulfur clusters using P. 

multocida as a model are rare, although clusters in other 
bacteria are better understood. Common structures in 
bacteria include [4Fe-4S], [3Fe-4S], and [2Fe-2S], which 
can be substituted, and hence, electron transferred [17]. 
Iron–sulfur clusters can stabilize some functions of bac-
terial proteins; for example, [4Fe-4S] clusters provide a 
more stable DNA-binding site for Escherichia coli nucleic 
acid endonuclease III [18]. Iron–sulfur clusters also shield 
proteins against proteolytic degradation by proteases. For 
example, [4Fe-4S] clusters provide aminotransferases in 
Bacillus subtilis with stable structure and activity, while 
disruption of clusters causes aminotransferase destruc-
tion [19]. Iron–sulfur clusters play a role in gene expres-
sion and regulation. For example, the rhizobial iron 
regulator A (RirA) requires an intact [3Fe-4S] cluster to 
regulate DNA transcription [20]. Superoxide response 
protein in E. coli functions as a signaling factor and tran-
scriptional activator, and its function and activity are 
dependent on the [2Fe-2S] cluster [21]. P. multocidia 
contains homologues of these proteins, and the annota-
tion information for these homologs is accessed in Gen-
Bank (endonuclease III, accession number AIN49160.1; 
aminotransferase accession number VEE36784.1; SoxR, 
accession number XHR73116.1).

2.2 � Functions of heme in bacteria
Heme is a porphyrin complex containing ferrous ions, 
which is found in animals, plants, and microorganisms, 
and sufficient levels of heme are favorable for promoting 
the growth of P. multocida [22, 23]. Heme functions as 
a cofactor in the biosynthesis of enzymes such as bacte-
rial oxidase, peroxidase, and the level of heme regulates 
enzyme activity [24]. Oxidases are involved in bacterial 
aerobic respiration, while peroxidase genes are involved 
in bacterial metabolism, biofilm formation, and bacterial 
motility, as well as in host colonization and infection [25, 
26]. 5-Hydroxytryptophan is the chemical precursor of 
many bioactive substances in bacteria, and heme can use 
the redox capacity of iron ions to hydroxylate the indole 
C5 position of tryptophan to form 5-hydroxytryptophan 
in the presence of O2 or H2O2 [27]. The enzymes indi-
cated above are also found in P. multocida [28], this dem-
onstrates how vital iron is for this bacterium.

2.3 � Effects of iron shortage on P. multocida
The ideal concentration of Fe2+ for bacterial growth is 
around 10–6  mol  L−1; below which, the phenomenon 
known as iron starvation occurs [29]. The solubility of 
Fe2+ at pH 7 is 1.4 × 10–9  mol  L−1, and the concentra-
tion of Fe2+ in the host is significantly lower, which does 
not meet the bacterial requirement [30]. Iron is involved 
in the proliferation, adhesion, and virulence of P. mul-
tocida in the host. Under iron-limited conditions, P. 
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multocida growth is inhibited, the thickness of the bac-
terial capsule is clearly reduced, and virulence is signifi-
cantly decreased. In contrast, LPS synthesis increases 
considerably in low-iron conditions. LPS is an essential 
factor for the adhesion of bacteria in Pasteurellaceae to 
their hosts, and a sequence of modifications in P. multo-
cida under iron-limiting conditions make it easier for it 
to adhere to its host [10, 11]. Outer membrane protein 
components of P. multocida are affected by iron, and 
under iron-restricted conditions, they express several 
iron-regulated outer membrane proteins (e.g., transferrin 
receptor and heme receptor) to capture iron ions from 
the host and defend against the negative effects of iron 
deficiency [31].

3 � Mechanism of iron uptake by the Tf receptor of P. 
multocida

Tf-binding protein A(TbpA), a Tf receptor, is present on 
the outer membrane of P. multocida and can absorb Fe3+ 
from the iron-containing Tf (holo-Tf) of the host. Due 
to the lack of energy in the outer membrane of bacteria, 

iron ions must enter the periplasm via TbpA, where they 
are powered by the ExbB–ExbD–TonB system, and then 
enter the cytoplasm via the ATP-binding cassette (ABC) 
transporter for P. multocida to carry out its activities, 
such as growth, reproduction, and metabolism. Uptake 
of iron ions holo-Tf by P. multocida from host seems to 
require three steps: formation of a complex of holo-Tf 
with TbpA, entry of Fe3+ into the periplasm, and entry of 
Fe3+ into the cytoplasm via the ABC transporter system 
(Figure 1).

3.1 � Formation of complex of holo‑Tf with TbpA
In the absence of free iron, P. multocida uses TbpA in 
its external membrane to absorb iron ions bound to the 
host holo-Tf. Tf is a glycoprotein synthesized mainly by 
host hepatocytes that can bind reversibly to Fe3+ [32]. 
TbpA is a TonB-dependent transmembrane receptor 
protein found in P. multocida [33]. It has a barrel-shaped 
structural domain (β-barrel) with 22 inversely parallel 
β-strands at the C terminus and an embedded plug at 
the N terminus [34]. The C-terminal β-barrel structural 

Figure 1  Mechanism of iron uptake by the transferrin receptor in P. multocida. 
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domain of TbpA specifically recognizes host holo-Tf and 
forms the transmembrane holo-Tf–TbpA complex [35, 
36]. TonB box, the conserved region at the N-terminal 
plug-like structural domain of TbpA, undergoes confor-
mational change, extends into the periplasm, and binds 
to TonB proteins on the cytoplasmic membrane to obtain 
energy, promoting Fe3+ transfer from the holo-Tf–TbpA 
complex to the periplasm [37, 38].

3.2 � Entry of Fe3+ into the periplasm
The TonB protein is anchored to the cytoplasmic mem-
brane of P. multocida through an N-terminal hydro-
phobic α-helical structure, which binds to ExbB–ExbD 
proteins to form the ExbB–ExbD–TonB complex [39]. 
The complex provides energy for bacteria to exchange 
substances in the outer membrane and translocates 
nutrients such as iron ions across the membrane [34]. 
TonB binds to ExbB–ExbD via its N-terminal α-helical 
structure, and the transmembrane structural domains 
of ExbB–ExbD form a proton channel that transmits 
the proton motive potential energy from the cytoplas-
mic membrane to TonB. ExbB–ExbD on the cytoplasmic 
membrane, through rotational movement, induces the 
whiplash-like region of TonB (including the stretchable 
spacer region and the C-terminal domain) to oscillate 
in the periplasm and bind to the TonB-box region of the 
N-terminal end of the TbpA exposed in the periplasm to 
transfer energy to the TbpA. This results in opening of 
its plug and barrel structural domains, and opening and 
generation of a conduit in the barrel domain, allowing 
Fe3+ to enter the periplasm [34, 40, 41].

3.3 � Entry of Fe3+ into the cytoplasm via the ABC 
transporter system

The ABC transporter system can utilize the energy of 
ATP hydrolysis to transport substrates such as iron ions 
into the cytoplasm against the concentration gradient. 
Fe3+ is captured by P. multocida through TbpA, which 
enters the periplasm of the bacterium and is then trans-
ported into the cytoplasm via the FbpABC (An ABC 
transporter system). During this process, ferric binding 
protein A (FbpA) is free in the periplasm as a monomer 
under natural conditions and captures Fe3+ in the peri-
plasm [42, 43]. FbpB is a hydrophobic transmembrane 
protein on the cytoplasmic membrane that is able to 
receive FbpA-delivered Fe3+. FbpC is a hydrophilic ATP-
binding protein located on the inner side of the bacterial 
cytoplasmic membrane, which binds to FbpB to form a 
dimer and provides FbpB with the energy required for 
the transport of Fe3+ [44]. After entering the cytoplasm 
through the FbpABC, Fe3+ is reduced to Fe2+ for metabo-
lism [45].

4 � Mechanism of iron uptake by the heme receptor 
of P. multocida

Most of the iron in animals is stored in heme [46]. Heme 
can bind globin to form hemopexins, such as Hb, myo-
globin, and cytochromes [47, 48]. Hb is the primary 
source of heme absorption for bacteria [49]. P. multo-
cida absorbs heme from host hemopexins via the heme 
transport system, transports it to the cytoplasm for 
catabolism, and obtains Fe2+ from it [7]. Heme transport 
is typically divided into two modes: direct transport, in 
which the bacteria directly take up host heme using heme 
receptors on the outer membrane; and indirect transport, 
in which the bacteria secrete high-affinity hemophores to 
the extracellular area, take up host heme, and deliver it to 
the heme receptors on the outer membrane.

4.1 � Direct heme transport system
Under iron-limiting conditions, P. multocida expresses 
Hb-binding protein A (HgbA), HgbB, Hb–hemopexin 
receptor, and other heme receptors [50]. These heme 
receptors are physically identical to TbpA and can 
directly recognize host Hb [51]. After the C-terminal 
β-barrel structural domain of the heme receptors binds 
to host Hb, the TonB-box region of the N-terminal plug 
structural domain undergoes a conformational change 
and extends into the periplasm of P. multocida. It binds 
to the C-terminal structural domain of TonB, which 
receives energy from the ExbB–ExbD–TonB complex, 
leads to opening of the plug structural domain of the 
heme receptors, and formation of a channel for heme 
transport [52] (Figure 2).

The transport of heme into the cytoplasm of P. multo-
cida via the ABC transport system (HmuTUV) is poorly 
understood. However, the HmuTUV in Yersinia pestis 
has been largely elucidated. Heme is transported to the 
periplasm, where it is captured by the heme-binding 
protein HmuT and delivered to the transmembrane pro-
tein HmuU on the cytoplasmic membrane. While the 
ATP-binding protein HmuV hydrolyzes ATP to provide 
energy for HmuU, heme is transported to the cytoplasm 
[53, 54]. Heme catabolic enzymes break down heme as 
it enters the cytoplasm, thereby releasing Fe2+ for bacte-
rial metabolism [55]. The GenBank-registered genomes 
of P. multocida (MAPT01000007.1, MANI01000004.1, 
MAPS01000002.1, etc.) all have homologous clusters of 
HmuTUV protein genes, whose annotated information 
predicts that they have the same ABC transporter system 
function.

4.2 � Indirect heme transport system
The indirect heme transport system, mediated by 
hemophores, is more efficient than the direct transport 
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method. Hemophores are a type of protein released 
extracellularly by Gram-negative bacteria, including 
Pseudomonas aeruginosa, Yersinia pestis, and Serratia 
marcescens. The primary hemophores are HasA, HusA, 
HxuA, and HphA [56–60]. These proteins have a high 
affinity for heme and can compete for it in host Hb, myo-
globin, and cytochrome before delivering it to specialized 
heme receptors on the bacterial outer membrane (differ-
ent hemophores correspond to different receptors) [61]. 
The energy provided by the ExbB–ExbD–TonB complex 
to the heme receptor causes the plug structural domain 
to open and a channel to form, transporting heme to the 
periplasm and then to the cytoplasm for bacterial metab-
olism by the ABC transport system; a process that is 
identical to that of the direct heme transport system. The 
protein HasA, encoded by the gene hasA, is located in the 
Has system, which also contains the receptor for HasA, 
the heme acquisition system receptor (HasR). HasR 
acquires heme either free or via an extracellular heme 
transporter, the hemophore HasA [62]. Current research 
reports related to P. multocida indicate the presence of 

HasR in this bacterium, although that of HasA is uncer-
tain [63]. Therefore, further studies are needed to deter-
mine whether an indirect heme transport mechanism 
occurs in P. multocida.

5 � Mechanism of iron uptake by iron carrier of P. 
multocida

Siderophores are high-affinity, low-molecular-weight 
metal chelators generated by microorganisms that typi-
cally bind to Fe3+ in the host or environment to create 
Fe3+-siderophore chelates, but they can also form che-
lates with other metal elements (such as molybdenum, 
manganese, cobalt, and nickel) [64, 65]. Siderophores 
can be categorized based on differences in chemical 
properties: (1) hydroxamates (consisting of acylated 
and hydroxylated alkylamines); (2) catecholates (con-
sisting of catecholates and hydroxyls); and (3) carbox-
ylates (consisting of citric acid or β-hydroxyaspartic 
acid). In addition to the categories listed above, some 
siderophores can be classified as mixed types, which 
are usually combinations of hydroxamates–catecholates 

Figure 2  Process of direct heme transport in P. multocida. 
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or hydroxamates–carboxylates. The catecholate sidero-
phore is the most effective at binding iron, whereas the 
carboxylate siderophore is the weakest [66].

Under iron-restricted conditions, P. multocida sero-
type A strains produce a carboxylate siderophore 
named multocidin [67]. Its receptor proteins are only 
identified as iron-associated outer membrane proteins 
that weigh 76, 84, and 94 kDa, and the detailed mech-
anism of the siderophore uptake is unknown [68]. P. 
multocida is unable to produce hydroxamate sidero-
phores, but it can absorb ferrioxamine B and E. The 
strain does not produce catecholate siderophores, but 
it can utilize many metabolic intermediates, including 
dihydroxybenzoic acid from these siderophores. It is 
unclear if P. multocida produces mixed siderophores, 
despite the fact that they may absorb mixed sidero-
phores such as rhizoferrin [69] (Figure 3).

FecA, a siderophore receptor, is found on the outer 
membrane of P. multocida [7]. In E. coli, FecA has a 
structure similar to that of the Tf receptor, TbpA, and 
the heme receptor, HgbA. It consists of a C-terminal 
β-barrel structural domain and an N-terminal plug 
structural domain [70]. FecA recognizes and binds 
siderophores, and after acquiring energy from the 
ExbB–ExbD–TonB complex, its plug domain opens, 
creating a pathway that transports ferric citrate to the 
periplasm and then to the cytoplasm via the ABC trans-
port system of siderophore (FecBDE) [71, 72]. In the 
cytoplasm, Fe3+ is reduced to Fe2+ and separated from 
the siderophores for bacterial metabolism, while the 
siderophores are degraded or expelled [73, 74]. P. mul-
tocida carries the siderophore receptor FecA, which 
is similar to E. coli; hence, it is hypothesized that the 

FecA-mediated siderophore transport mechanism of P. 
multocida is similar to that of E. coli.

6 � Bacterial iron uptake regulator
Iron deficiency is detrimental to bacterial growth and 
reproduction, but excessive Fe2+ intake can trigger the 
Fenton reaction, which produces reactive oxygen species 
and reactive nitrogen, resulting in amino acid residue oxi-
dation, protein and DNA damage, and, eventually, death 
[75]. As a result, the concentration of iron ions in bacte-
ria must be strictly controlled. To maintain iron homeo-
stasis, bacteria have evolved iron-related regulators such 
as the ferric uptake regulator (Fur) [76], iron-dependent 
regulator, iron response regulator [77], rhizobial iron reg-
ulator A [78], and iron–sulfur cluster regulator [79]. Cur-
rently, only Fur has been identified in P. multocida, which 
is the most important transcriptional regulator for main-
taining iron homeostasis in bacteria. Fur has a dimerized 
metal ion-binding domain at the C terminus and a DNA-
binding domain at the N terminus, and it represses or 
activates the transcription of iron-related genes in bacte-
ria by sensing intracellular Fe2+ levels [80]. In the follow-
ing section, we elaborate on Fur.

6.1 � Regulatory mechanisms of Fur as a transcriptional 
repressor

When Fe2+ levels in bacteria are too high, Fur can detect 
and attach to a consensus sequence called the Fur-box on 
DNA. If the promoter on the DNA overlaps the site of the 
Fur-box, Fur occupies the promoter region, preventing 
RNA polymerase from binding to the DNA and inhibit-
ing transcription [81, 82] (Figure 4A). In E. coli, for exam-
ple, the Fur C terminus binds to Fe2+ to form a Fur–Fe2+ 
complex, prompting the DNA-binding domain at the 

Figure 3  Molecular structure of siderophores that can be used by P. multocida. ferrioxamine B, a member of the hydroxamates siderophores; 
ferrioxamine E, a member of the hydroxamates siderophores; rhizoferrin, a member of the complex siderophores of hydroxamates-carboxylates.
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N terminus of Fur to bind to the Fur-box on the E. coli 
siderophore-synthesis-associated gene cluster, iucABCD. 
This results in inability of RNA polymerase to aggregate 
to the promoter of iucABCD, inhibiting siderophore syn-
thesis and preventing the bacterium from absorbing iron 
ions [83, 84]. Fur research in P. multocida has trailed 
behind, with exploration of the bacterial Fur beginning 
in 2001 [85]. Subsequently, researchers discovered the 
shared Fur-box sequence in the iron-related genes tbpA, 
hgbA, and hgbB of P. multocida; the expression of which 
is inhibited by Fur [86–88]. In addition, the synthesis of 
siderophores in P. multocida is also negatively regulated 
by Fur [89].

6.2 � Regulatory mechanisms of Fur as a transcriptional 
activator

When the Fur-box is positioned around −100  bp 
upstream of the transcription start point, Fur can 
enhance RNA polymerase aggregation at the −10 bp and 
−35 bp regions of DNA, hence activating DNA transcrip-
tion [82, 90] (Figure  4B). Fur promotes the expression 

of the iron storage-related protein bacterioferritin (Bfr) 
[91]. Bfr can oxidize Fe2+ to Fe3+ and store it, preventing 
bacteria from being damaged by excess Fe2+ [92]. Bfr is 
classified into two types: heme-free ferritin A (FtnA) and 
heme-containing bacterioferritin B (BfrB) [93]. In E. coli, 
for example, Fur forms a Fur–Fe2+ complex with Fe2+, 
which binds to the Fur-box at −84  bp upstream of the 
bacterioferritin gene ftnA and activates ftnA transcrip-
tion, thereby storing redundant free iron in the cytoplasm 
[94]. A homologous gene expressing FtnA also exists in P. 
multocida, and therefore [7], a transcriptional activation 
regulatory function of Fur may also exist in P. multocida.

7 � Summary and prospects
Pasteurellosis is an important bacterial infectious disease 
that affects a wide range of animals. In this paper, three 
iron uptake mechanisms of P. multocida are described in 
detail. This provides a systematic theoretical basis for a 
comprehensive understanding of the molecular patho-
genesis of the iron uptake systems of P. multocida, as well 
as new ideas for the development molecular-targeted 

Figure 4  Regulatory mechanism of Fur acts as transcriptional repressor (A) and transcriptional activator (B). 
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drugs and subunit vaccines against P. multocida. After 
analyzing research on the iron uptake systems of P. mul-
tocida and its occurrence and regulatory mechanism, 
we identified the following issues that require immedi-
ate attention. (1) Many bacteria rely on siderophores 
for iron uptake, and research into their chemical struc-
tures has advanced significantly in E. coli and Rhizobium. 
However, the research on multocidin, the siderophore 
of P. multocida, is still ambiguous, and there is a signifi-
cant knowledge gap in the understanding of its chemi-
cal structure, synthetic and secretory pathway, and outer 
membrane receptor; all of which require urgent further 
study and clarification. At the same time, it is necessary 
to strengthen the investigation and development of P. 
multocida siderophore production pathways to produce 
a diverse range of novel siderophores. (2) The transport 
efficiency of the heme indirect transport system mediated 
by the hemophores is higher than that of the heme direct 
transport system. However, there is a lack of research 
on the hemophores of P. multocida, and the detailed 
mechanism of the hemophores mediating the uptake of 
heme from the host heme binding protein requires fur-
ther investigation. (3) The distribution of iron-associated 
outer membrane receptors such as TbpA, HgbA, and 
HgbB in different regions, hosts, and serotypes of P. mul-
tocida strains differs significantly [95–97]. To prevent and 
control pasteurellosis, the molecular epidemiology of P. 
multocida must be thoroughly investigated and analyzed. 
(4) Although Fur has been extensively investigated in 
many bacteria and more Fur-regulated genes have been 
identified, there are still many molecular mechanisms 
and strategies of regulation that have not been fully elu-
cidated [89]. The effect on virulence after the deletion of 
fur gene in P. multocida is significantly less pronounced 
than that of other bacteria, implying that this bacterium 
may have other regulators that need to be investigated.

The current important directions in the application 
of the bacterial iron uptake mechanisms include: (1) 
developing new drug targets by inhibiting siderophore 
synthesis or blocking the iron uptake pathway of patho-
genic bacteria; (2) utilizing synthetic siderophore–drug 
conjugates to aid drug translocation into pathogenic bac-
terial cells to improve the treatment of multidrug-resist-
ant bacterial infections; (3) designing subunit vaccines 
with single or multiple antigenic components, or syn-
thetic peptide vaccines (multi-epitope vaccines); and (4) 
exploiting iron-related genes as a breakthrough to build 
novel attenuated vaccines with gene deletion. Under-
standing role and regulatory mechanism of P. multocida 
in acquiring nutrients such as iron from the host will help 
with the prevention and control of pasteurellosis.
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